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Advantages of a new method to obtain solutions of the Hartree-Fock-
Bogoliubov (HFB) equation directory in the HFB canonical form are discussed
in comparison with the ordinary method in which the solutions are expressed as
the vacuum of Bogoliubov quasiparticles. A byproduct and necessary special
cares are also described.

In order to treat the neutron-rich side of the nuclear chart, one has to take into

account the pairing correlation in the continuum part (= positive-energy part) of the

single-particle spectrum. One has to do so not only for nuclei very close to the neutron

drip line because, for a reliable treatment of the pairing correlation in the presence of shell

fluctuations, one has to consider explicitly at least (empirically speaking) half of a major

shell above the Fermi level in BCS calculations. Namely, one has to treat the positive

energy states explicitly if εF > −1
2
h̄ωosc. This condition applies to roughly half of the

nuclei in the nuclear chart and the number of such nuclei is about 104

2
.

One also has to consider the long tail for large r for neutron-rich nuclei. The large-r

asymptotic form of the density looks like ρ(r) ∼
(
e−κr/r

)2
, κ =

√−2mεF/h̄, where εF is

the energy of the last occupied Hartree-Fock (HF) orbital. In the presence of the pairing

correlation, εF is replaced with εF − E(min)
qp , where E(min)

qp is the smallest quasiparticle

excitation energy and is roughly equal to the pairing gap. This means that the tail is

shortened by the pairing correlation. Therefore calculations of the density tail require a

reliable treatment of the pairing.

In order to treat pairing correlations in the continuum and long density tails simul-

taneously, one has to employ the coordinate-space HFB method. Here, not a radial grid

but a three-dimensional mesh representation is preferable because all the nuclei except

near spherical magics are deformed. The three-dimensional mesh is, however, feasible

only for Skyrme forces, for which the mean field becomes local. The canonical-basis

HFB method [1, 2, 3, 4, 5] is a new method to obtain HFB solutions for Skyrme forces

in three-dimensional Cartesian mesh representation with positive-energy states explicitly

considered.

In the ordinary method to solve the HFB[6, 7, 8], the solutions are expressed as the

vacuum of the Bogoliubov quasiparticles.

|ψ〉 =
#basis∏

i=1

bi|0〉, bi =
∑
s

∫
d3r

{
φ∗i (~r, s) a(~r, s) + ψi(~r, s) a†(~r, s)

}
, (1)

where b†i are the creation operators of quasiparticles. The two kinds of amplitudes can be



obtained as the eigenvectors of the HFB super matrix,
(
−h h̃

h̃ h

) (
φi

ψi

)
= εi

(
φi

ψi

)
. (2)

This method is not very efficient because the quasiparticle wavefunctions contain by far

more information than is necessary to describe the ground state. Most of their information

concerns particle or hole excitations.

HFB solutions can be expressed in the BCS form as

|Ψ〉 =
imax∏

i=1

(
ui + vi a†i a†ı̄

)
|0〉, a†i =

∑
s

∫
d3r ψi(~r, s) a†(~r, s), (3)

where a†i is the creation operator of a nucleon in the ith HFB canonical basis state.

This expression is exact when imax = 1
2
#basis according to the Bloch Messiah theorem.

The essential advantage of this expression is that one may neglect v2 ¿ 1 states as far

as the ground state is concerned. One can truncate the number of canonical basis by

imax = O(A) ¿ #basis to a good approximation. The canonical-basis HFB method is

a much more economical way to express HFB ground states of neutron rich nuclei than

expressing them as quasiparticle vacua.

The canonical-basis method determines the canonical basis and the uv factors without

the full knowledge of the quasiparticle states. This can be pursued in the gradient method

under constraint of orthonormality among the canonical basis.

δE

δψ∗i
= Hiψi =

∑

j

λijψj, Hi = v2
i h + uivih̃, (4)

where h is the HF Hamiltonian and h̃ is the pairing Hamiltonian. This expression of

Hi gives a new insight: The positive energy canonical basis are the bound states of the

pairing Hamiltonian. Consequently, they are guaranteed to be spatially localized (by h̃,

not by h) and form a discrete spectrum. See Ref.[4] for explanations.

The following table is a summary of the comparison between the two methods.

method #basis
orthogonality
condition

pairing force

quasi particle ∝ box volume redundant δ-func, + dens. dep.
canonical basis ∝ nuclear volume essential + mom. dep.

In the canonical basis method, the Hamiltonian becomes state-dependent and thus

the orthogonality among the canonical basis states should be explicitly taken care of. See

Ref.[4] for how it can be made possible.

The canonical-basis method needs momentum-dependent (or finite-range) pairing in-

teraction in order to circumvent the point collapse problem, which is peculiar to this

method. It is depicted in Fig. 1. I have tried several ways to avoid the collapse to find

unwanted side effects for many of them. See Ref. [4] for a detailed discussion.



Fig. 1: Point collapse of a high-lying
canonical orbital. The canonical orbital
whose occupation probability is smaller
than some critical value shrinks into a
point unless the pairing Hamiltonian has
a kinetic term.

Fig. 2: The pairing gap ∆ versus the
Fermi level εF for the global-minimum
HFB solution (thick bold line) and pos-
sible local-minimum solutions (thick dash
line).

In my talk I have shown the result of a simulation of the approach to the neutron drip

line as a demonstration of the method and suggested a possibility to obtain approximate

localized solutions for nearly bound systems (Fig. 2). Details can be found in Ref. [5].

I have also discussed on the extension of the method to the full Skyrme interaction

with time-reversal symmetry imposed, which will be published in future.
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