Treatment of the continuum states in the Woods-Saxon Strutinsky method

S. Takahara1, Y. R. Shimizu2, N. Tajima3

1 School of Medicine, Kyorin University
2 Department of Physics, Kyushu University
3 Department of Applied Physics, Fukui University

Contact e-mail: staka@kyorin-u.ac.jp

Strutinsky shell correction methods with finite height potentials have a well known problem \cite{1} in applying to unstable nuclei: The level density around zero energy leads to an artificial increase. Kruppa et al. \cite{2} have proposed a prescription with which one can get rid of the unwanted contribution of the particle gas to the level density by utilizing the Green function approach. Namely, a new level density is defined as the difference between two kinds of discrete level densities:

\[g_M(\epsilon) = \sum_{i=1}^{M} \delta(\epsilon - \epsilon_i) - \sum_{i=1}^{M} \delta(\epsilon - e_0^i) \]

where \(\epsilon_i \) is a single particle level of the total Hamiltonian and \(e_0^i \) is that of the free Hamiltonian in the same truncated subspace. The positive energy part of this modified level density does not diverge as the number of basis \(M \) is increased. However, this procedure does not guarantee the fulfillment of the plateau condition for the smoothed single-particle energy \cite{3}.

Recently, it has been shown \cite{4} that the plateau condition can be satisfied by transforming the single-particle spectrum in such a way that its average level density coincides with some simple function. We employ this method, expecting that it works for the Woods-Saxon potential, too.

We have noticed that it is also necessary to modify the BCS gap equation in a similar manner as the Kruppa-Strutinsky method.

With these prescriptions, we have applied the Woods-Saxon Strutinsky method to unstable nuclei. We met another problem, however, that existing parameter sets of the Woods-Saxon potential are not suitable for dripline nuclei. We have calculated the driplines for several Woods-Saxon parameter sets and found that all of them have a tendency to retract inward the driplines compared with those predicted by empirical mass formulae. Therefore, it is necessary to find a new parameter set applicable not only to near stable nuclei but also to the driplines.

We are also applying the method to investigate the origin of the prolate dominance \cite{5} by changing the potential parameters. In this case, increasing the diffuseness parameter of potential tends to unbound the nucleus. So it is necessary to adjust the potential depth as a function of the diffuseness. We determine the potential depth so that the Fermi level in the Thomas-Fermi approximation agrees with that calculated with a mass formula.

In summary, with several modifications, the Strutinsky shell correction method is now capable of treating neutron-rich nuclei because of the proper treatment of the continuum level density. It becomes possible to perform more accurate and reliable calculations of the nuclear masses to produce a new mass formula based on the Woods-Saxon Strutinsky method.