【 高階微分 】 high-order differentials

• 記法のいろいろ

1 階微分: $\frac{d}{dx}f(x) = \frac{df(x)}{dx} = f'(x)$

2 階微分: $\frac{d}{dx} \left(\frac{d}{dx} f(x) \right) = \frac{d^2 f(x)}{dx^2} = f''(x)$ $n 階微分: \frac{d}{dx} \left(\frac{d^{n-1}}{dx^{n-1}} f(x) \right) = \frac{d^n f(x)}{dx^n} = f^{(n)}(x)$ $\frac{d^n}{dx^n}f(x), \left(\frac{d}{dx}\right)^n f(x)$ と書いてもよい。

【問1】 以下の関数の1,2,3階微分を求めよ。

- 1. $\frac{1}{x+1}$
- $2. \log x$
- 3. $\arcsin x$
- 4. $\sinh(x^2)$
- 5. $\tan x$
- 6. e^{-x^2}

4 の答: $2x \cosh x^2$, $2 \cosh x^2 + 4x^2 \sinh x^2$, $8x^3\cosh x^2 + 12x\sinh x^2.$

 $\frac{1}{\cos^2 x}$, $\frac{2\sin x}{\cos^3 x}$, $\frac{6-4\cos^2 x}{\cos^4 x}$. 5 の答:

 $-2xe^{-x^2}$, $2(2x^2-1)e^{-x^2}$, $-4x(2x^2-3)e^{-x^2}$.

【 n 階微分】nth order differentials

関数によっては、任意の階数の微分が一つの数式で表せる。 (例)

 $(e^x)^{(n)}$ $(\sin x)^{(n)}$ = $\sin\left(x + \frac{n\pi}{2}\right)$ $(\cos x)^{(n)} = \cos \left(x + \frac{n\pi}{2}\right)$

【問 2】 以下の n 階微分を求めよ $(n \ge 1$ とする)。

- 1. $(e^{2x})^{(n)}$ 2. $(e^{-x})^{(n)}$ 3. $(\sin \frac{x}{2})^{(n)}$

- 4. $(2^x)^{(n)}$ 5. $(\sqrt{x})^{(n)}$ 6. $(\sin^2 x)^{(n)}$

<u>5 の答</u>: $-\left(-\frac{1}{2}\right)^n (2n-3)!! \frac{\sqrt{x}}{x^n}$

ただし n!! (n の double factorial, factorial とは階乗のこと) は、

- n が偶数のとき $n!! = n(n-2)(n-4)\cdots 2$ 、
- n が奇数のとき $n!! = n(n-2)(n-4)\cdots 1$

を表す。

<u>6 の答</u>: $-2^{n-1}\cos\left(2x+\frac{n\pi}{2}\right)$. $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ と書き直してから微分するとよい.

【 関数の積の高階微分】 · · · of product of functions

ライプニッツ (Leibniz) の公式

$$\{f(x)g(x)\}^{(n)} = \sum_{i=0}^{n} \binom{n}{i} f^{(n-i)}(x)g^{(i)}(x)$$

ただし $\left(egin{array}{c} n \ i \end{array}
ight) = {}_{n}C_{i} = rac{n!}{(n-i)!\,i!}:$ 二項係数

$$\frac{\sqrt{3}}{(fg)'} = f'g + fg'
(fg)'' = f''g + 2f'g' + fg''
(fg)''' = f'''g + 3f''g' + 3f'g'' + fg'''
(fg)'''' = f''''g' + 4f'''g' + 6f''g'' + 4f'g''' + fg''''$$

また x^n の n+1 階以上の微分が零である ことにも留意せよ!

【問3】 下記の n 階導関数を計算せよ $(n \ge 1$ とする)。

- 1. $(xe^x)^{(n)}$
- 2. $(x^2e^{-x})^{(n)}$
- 3. $\left(x^3\sin x\right)^{(n)}$
- 4. $((x+1)^2e^{2x})^{(n)}$
- $5. \left((x^3 + x)\cos x \right)^{(n)}$
- 6. $\left(x^2(x+a)^n\right)^{(n)}$

1 のヒント: $k \ge 2$ に対して $x^{(k)} = 0$ なので $(xe^x)^{(n)} = \binom{n}{0} x^{(0)} (e^x)^{(n)} + \binom{n}{1} x^{(1)} (e^x)^{(n-1)}$

2 のチェック: n=10 を代入すると $(x^2-20x+90)e^{-x}$ になる。

3 のチェック: n = 10 で $-(x^3 - 270x)\sin x + (30x^2 - 720)\cos x$

下記の関係は、容易に証明できる。

 $(\sin x)^{(n)} = (\cos x)^{(n-1)} = -(\sin x)^{(n-2)} = -(\cos x)^{(n-3)}$ $(\cos x)^{(n)} = -(\sin x)^{(n-1)} = -(\cos x)^{(n-2)} = (\sin x)^{(n-3)}.$ これらの関係を使い、結果に含まれる三角関数を $\sin(x+\frac{n\pi}{2})$ と $\cos(x+\frac{n\pi}{2})$ だけにしてみよう。

4 の答: $2^n e^{2x} \left\{ (x+1)^2 + n(x+1) + \frac{n(n-1)}{4} \right\}$

 $\frac{5 \ \mathfrak{O} \Xi}{4}: \quad x\{x^2-(3n^2-3n-1)\}\cos\left(x+\frac{n\pi}{2}\right) \\ \quad +n\{3x^2-(n^2-3n+1)\}\sin\left(x+\frac{n\pi}{2}\right)$

<u>6 の答</u>: $n! \left\{ x^2 + 2nx(x+a) + \frac{1}{2}n(n-1)(x+a)^2 \right\}$