平成 21 年度 微分積分 I(7月31日(金))

[担当:堀邊、古閑、田嶋、保倉]

学科(該当学科名を)で囲むこと)	学	籍	番	号	氏	名	採	点
電気·電子 工学科								
情報メディア工学科								
物理工学科								
知能システム工学科								/30

この解答用紙1枚には1問しか解答できません。表だけで足りないときは、その旨を明記し、裏を使用してください。

次の関数の x=0 での 3 次までのテーラー展開を求めよ。ただし、剰余項は R_4 と表示し、具体的な形を求 める必要はない。

(1)
$$\sin\left(x + \frac{\pi}{4}\right)$$
 (2) $\sqrt{1+x}$ (3) $x\cos x$

(2)
$$\sqrt{1+x}$$

$$(3) x \cos x$$

学 和	科(該当学科名を) で囲むこと)	学	籍	番	号	氏	名	採	点
電気·電子	子工学科								
情報メディ	ィア工学科								
物理コ	L 学 科								
知能シスラ	テム工学科								/20

この解答用紙 1 枚には 1 問しか解答できません。表だけで足りないときは、その旨を明記し、裏を使用してください。

2 関数 g(x)

$$g(x) = (1+x)^{\frac{1}{x}}$$

とするとき、次の問いに答えよ。

問い1 関数 g(x) の1次 (階) 導関数 g'(x) を求めよ。

問い 2 関数 h(x) を $h(x)=\dfrac{g'(x)}{g(x)}$ とする。極限値 $\lim_{x\to 0}h(x)$ を求めよ。

問いる 1 階導関数 g'(x) の $x \to 0$ の極限値 $\lim_{x \to 0} g'(x)$ を求めよ。ただし、 $\lim_{x \to 0} g(x) = e$ であることを用いてもよい。

学	科((該当学科名を	学	籍	番	号	氏	名	採	点
電 気・	電子 工学科								
情報メ	ディア工学科								
物理	工 学 科								
知能シ	ステム工学科								/30

この解答用紙1枚には1問しか解答できません。表だけで足りないときは、その旨を明記し、裏を使用してください。

図 次の関数
$$f(x,y)$$
 について、 $f_x(x,y)=rac{\partial f(x,y)}{\partial x}$ 、 $f_y(x,y)=rac{\partial f(x,y)}{\partial y}$ を求めよ。

(1)
$$f(x,y) = x^2y + y^3$$

(1)
$$f(x,y) = x^2y + y^3$$
 (2) $f(x,y) = \frac{xy}{(x^2 + y^2)^2}$
(3) $f(x,y) = \sqrt{(x-a)^2 + (y-b)^2}$

(3)
$$f(x,y) = \sqrt{(x-a)^2 + (y-b)^2}$$

(3) において、a、b は定数。

学	科((該当学科名を	学	籍	番	号	氏	名	採	点
電気·	電子 工学科								
情報メ	ディア工学科								
物理	工 学 科								
知能シ	ステム工学科								/20

この解答用紙 1 枚には 1 問しか解答できません。表だけで足りないときは、その旨を明記し、裏を使用してください。

 $\boxed{4} \quad x = \frac{1}{2}(e^{u+v} + e^{u-v}), \ y = \frac{1}{2}(e^{u+v} - e^{u-v}) \ \texttt{とおく}. \ 2 \ \texttt{次} \ (\textbf{階}) \ \textbf{偏導関数が存在して連続である関数} \ z = f(x,y)$ に対し、次の問いに答えよ。

問い
$$x_u \left(= \frac{\partial x}{\partial u} \right)$$
、 $x_v \left(= \frac{\partial x}{\partial v} \right)$ 、 $y_u \left(= \frac{\partial y}{\partial u} \right)$ 及び $y_v \left(= \frac{\partial y}{\partial v} \right)$ を x 、 y を用いて表わせ。

問い
$$z_u \left(= \frac{\partial z}{\partial u} \right)$$
 及び $z_v \left(= \frac{\partial z}{\partial v} \right)$ を $z_x \left(= \frac{\partial z}{\partial x} \right)$ 、 $z_y \left(= \frac{\partial z}{\partial y} \right)$ 及び x 、 y を用いて表せ。

問いる
$$z_{uu}\left(=rac{\partial^2 z}{\partial u^2}
ight)$$
 及び $z_{vv}\left(=rac{\partial^2 z}{\partial v^2}
ight)$ を $z_{xx}\left(=rac{\partial^2 z}{\partial x^2}
ight)$ 、 $z_{yy}\left(=rac{\partial^2 z}{\partial y^2}
ight)$ 、 $z_{xy}\left(=rac{\partial^2 z}{\partial x \partial y}
ight)$ 、 z_x 、 z_y 、 x 、 y を用いて表せ、

問い4

$$z_{xx} - z_{yy} = e^{-2u} \left(z_{uu} - z_{vv} \right)$$

となることを示せ。

x = 0 での x = 0

(1)
$$\sin\left(x+\frac{\pi}{4}\right)_{Q^{\frac{1}{2}}}$$
 (2) $\sqrt{1+x}$ (3) $x\cos x$ (3)

(1)
$$\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}x - \frac{1}{2\sqrt{2}}x^2 - \frac{1}{6\sqrt{2}}x^3 + R_4$$

(z)
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + R_4$$

(3)
$$\chi \cos \chi = (0 +) - 1 + (+ 0 - \chi^2) - \frac{1}{z} \chi^3 + R \phi$$

科目名	試験日	出題者	学科・学籍番号	氏	名	得	点	
微分積分 I(期末)	H21 7/31	堀邊・古閑					/30	

2 関数 $g(x) = (1+x)^{\frac{1}{2}}$ について, 次の間**い**に答えよ.

問い1 1 次導関数 g'(x) を求めよ. ? と

問い2 $h(x) = \frac{g'(x)}{g(x)}$ とする. 極限値 $\lim_{x\to 0} h(x)$ を求めよ. 7 点

問い3 極限値 $\lim_{x\to 0}g'(x)$ を求めよ. ただし, $\lim_{x\to 0}g(x)=e$ であることを用いてもよい. んだい、

FII.
$$q' = q \cdot (\log q)' = (1+x)^{1/x} \left\{ \frac{1}{x} \log (1+x) \right\}$$

$$= (1+x)^{1/x} \left\{ -\frac{1}{x^2} \log (1+x) + \frac{1}{x} \cdot \frac{1}{1+x} \right\}$$

$$= (1+x)^{1/x} \left\{ \frac{1}{x(1+x)} - \frac{1}{x^2} \log (1+x) \right\}$$

$$\frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \log (1+3) + \frac{1}{3} \log (1+3)$$

15/3.
$$\lim_{\chi \to 0} g'(\chi) = \lim_{\chi \to 0} h(\chi) g(\chi) = \left(\lim_{\chi \to 0} h(\chi) \cdot \left(\lim_{\chi \to 0} g(\chi) \right) \right)$$

$$= -\frac{1}{2} \cdot e = -\frac{e}{2}$$

				·					
1	科日夕	試験日	出題者	学科・学籍番号	ir.	夕.	得	点	
	44 1 1 1	D MON LI	11/23/11	丁州 丁桐田〇	14	<u> </u>	1.11	////	
			烟湿 • 古閣						
١	微分積分 I(期末)	H21 7/31	畑煙 口内	1			i	/20	
1		1121 [/91	开油 / 一人	ļ	ļ			720	

 $oxed{3}$ 次の関数 f(x,y) について, 1 次の偏導関数 $f_x(x,y),\,f_y(x,y)$ を求めよ.

(1)
$$f(x,y) = x^2y + y^3$$
 (2) $f(x,y) = \frac{xy}{(x^2 + y^2)^2}$ (3) $f(x,y) = \sqrt{(x-a)^2 + (y-b)^2}$ ただし、(3) において、 a,b は定数.

(1)
$$f_{\kappa} = 2\pi c y$$

$$f_{\gamma} = \chi^2 + 3 y^2$$

(2)
$$f_{x} = \frac{y(x^{2}+y^{2})^{2}-xy\cdot 2(x^{2}+y^{2})\cdot 2x}{(x^{2}+y^{2})^{4}} = \frac{y(y^{2}-3x^{2})}{(x^{2}+y^{2})^{3}}$$

$$f_{y} = \frac{x(x^{2}+y^{2})^{2}-xy\cdot 2(x^{2}+y^{2})\cdot 2y}{(x^{2}+y^{2})^{4}} = \frac{x(x^{2}-3y^{2})}{(x^{2}+y^{2})^{3}}$$

(3)
$$f_{x} = \frac{2(x-a)}{2\sqrt{(x-a)^{2}+(y-b)^{2}}} = \frac{x-a}{\sqrt{(x-a)^{2}+(y-b)^{2}}}$$

$$f_{y} = \frac{z(y-b)}{2\sqrt{(x-a)^{2}+(y-b)^{2}}} = \frac{y-b}{\sqrt{(x-a)^{2}+(y-b)^{2}}}$$

- [科目名	試験日	出題者	学科・学籍番号	氏	名	得点	
	微分積分 I(期末)	H21 7/31	堀邊・古閑				/3	0

$$x = \frac{1}{2}(e^{u+v} + e^{u-v}), \quad y = \frac{1}{2}(e^{u+v} - e^{u-v})$$

とおく、2 次の偏導関数が存在して連続である関数 z=f(x,y) に対し、次の間いに答えよ、

問い1 x_u, x_v, y_u, y_v を x, y を用いて表せ、 **2**点 +2点 +2点 +2点 = 8点

問い2 z_u , z_v を z_x , z_y , x, y を用いて表せ. 2点 七 2点 こ 4点.

問い3 zuu, zvvを zxx, zyy, zxy, zx, zy, x, yを用いて表せ、 3名 + 3点 ニ6点.

問い4

$$z_{xx} - z_{yy} = e^{-2u} \left(z_{uu} - z_{vv} \right)$$

となることを示せ、 2点

$$\frac{182}{Z_v} = \frac{Z_x X_u + Z_y y_u = X Z_x + y Z_y}{Z_x = Z_x X_v + Z_y y_v = y Z_x + X Z_y}$$

$$\frac{\beta \beta \beta}{\beta \beta} = \sum_{uu} = \sum_{u} \sum_{x} + \sum_{x} \sum_{x} + \sum_{x} \sum_{y} + \sum_{x} \sum_{y} + \sum_{y} \sum_{y} + \sum_{y} \sum_{y} \sum_{y} + \sum_{x} \sum_{y} \sum_{y} \sum_{y} + \sum_{x} \sum_{y} \sum_{y} \sum_{x} \sum_{y} + \sum_{x} \sum_{y} \sum_{y} \sum_{x} \sum_{y} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x} \sum_{x} \sum_{x} \sum_{x} \sum_{x} \sum_{y} \sum_{x} \sum_{x$$

科目名	計験日	出題者	学科・学籍番号	氏	名	得	点
微分積分 I(期末)	H21 7/31	堀邊・古閑					/20

: Zx-Zvy = e-24 (244-Zvy-)