剛体の回転直立と形の関係

2006年2月16日

福井大学 工学部 物理工学科13年度入学 14番 木澤 隆之

目 次

序章

ゆで卵のような prolate 形や碁石のような oblate 形の剛体を机上において,高速で回転させると立ち上 がる。これは、鉛直軸の角速度を減少させる摩擦力の働きによって、重力に逆らって重心が上がり剛体が 立つと言う現象です。この現象は 100 年以上前から知られており,特に、1952 年に Braams,Hugenholtz 両氏によって偏芯球について完全な厳密解があることがわっかている。さらに、2002 年に Moffatt,下村 両氏によって任意の軸対称形において、近似的な保存量があるとする理論が発表された。

この理論によると、回転する剛体の運動方程式 (オイラー方程式) に対して I_3 を対称軸, I_1 をそれ以 外の軸まわりの慣性モーメント, Ω, n をそれぞれ鉛直軸, 対称軸方向の角速度, θ を鉛直軸と対称軸の なす角度, 重心の高さ h としたとき $I_3n = I_1\Omega\cos\theta$ という近似式が得られます。この近似をジャイロス コピック近似とよび, 剛体の運動方程式を積分する際に用いることによって、ジェレット定数 $J = A\Omega h$ を導出することができる。この定数から鉛直軸の角速度 Ω を減少させる摩擦力の働きによって, h すなわ ち重心を上げ, 剛体が立ち上がることが分かる。

本卒業研究では、任意の軸対称形にとらわれずさまざまな剛体の形において、いかに直立するか検証し て見ることにした。2005年大森氏のプログラムをもとに、剛体の並進・回転運動を表す微分方程式を4 次のルンゲクッタ法を用いて解き、上記の近似を用いずに軸対称・非軸対称物体の回転直立現象を再現 し、その回転直立時間が軸比にどう依存しているか、数値実験によって調べた。さらにその結果をすで に与えられている数式と比較し、Moffatt-下村理論の検証にあたる。

注)「回転直立」という言葉は『科学』戸田盛和「回転する卵はなぜ直立する」(2002) のタイトルから、我々が造語したものである。

第1章 軸対称物体の回転直立-Moffatt下村理論の紹介-

この章では文献 [?, ?, ?] をもとに Moffatt と下村による軸対称物体の回転直立の理論の詳細な解説を 行う。

1.1 座標系と接触点

図 1.1: 回転する軸対称物体

点 O を重心とする任意の軸対称物体が,水平面上を滑りながら点 O のまわりに回転運動をしていると する。考えている瞬間における物体と水平面との接点を P とする。点 P において摩擦力が働かなけれ ば,運動方程式の解として定常的な歳差運動が存在することは,よく知られている [4,5]。そこで,さしあ たり定常的な歳差運動が実現していて,したがって,点 O の速度はゼロと見なして,以下の議論を展開す る。その上で,非常に弱い摩擦力が働いた場合に,その効果により運動にどのような変化が起きるか,具 体的には点 O が上昇するかどうか,を考察することにする。

まず座標軸の取り方を説明する。X, Y, Z系 は 点 O を原点として水平面内で回転する座標系である。 Z軸は鉛直上向きであり, X 軸は水平面内に, 点 P が XZ 平面にのるようにとる。 Y 軸は X 軸と Z 軸 とに垂直で, X, Y, Z 軸が右手系をなす向きにとる。X, Y 軸は点 P の運動に追随して水平面内で回転す るが, 考えている瞬間におけるその角速度を Ω とする。1, 2, 3 系は物体に固定された座標系 (剛体系) で あり, 点 O を原点とする。3 軸は物体の対称軸方向を, 1, 2 軸はそれに垂直な 2 方向を向くようにとる。 1,2,3 軸も右手系をなす。形状が軸対称であるため,1,2 軸の取り方に任意性はない。 ξ, η, ζ 軸は、物体の角速度ベクトル ω で回転している。 $\mathbf{X}_{p} = \overrightarrow{OP}$ は O を原点とした接点 P の位置ベクトルとする。このとき物体が受ける力は

・ 重力
$$M\mathbf{g} = (\mathbf{0}, \mathbf{0}, -Mg)$$

- ・ 垂直抗力 R
- Y 方向への摩擦力 F

である。摩擦力がY方向を向いていることは、物体の対称軸(3)軸の傾き $(図中の \theta)$ の変化が、回転角速度に比べて無視できるほど小さいという仮定の帰結である。

物体の角速度ベクトル ω の各成分は

$$\begin{aligned}
\omega_1 &= -\Omega \sin \theta \\
\omega_2 &= \dot{\theta} \\
\omega_3 &= n
\end{aligned}$$
(1.1)

となる。

また水平面内回転系での各成分は

$$\begin{aligned}
\omega_{\rm X} &= -\omega_1 \cos \theta + \omega_3 \sin \theta \\
&= -\Omega \sin \theta \cos \theta + n \sin \theta \\
&= (n - \Omega \cos \theta) \sin \theta \\
\omega_{\rm Y} &= \omega_2 = \dot{\theta} \end{aligned} (1.2)

$$\omega_{\rm Z} &= \omega_3 \cos \theta + \omega_1 \sin \theta \\
&= n \cos \theta + \Omega \sin^2 \theta
\end{aligned}$$$$

ただしnはωの3軸成分で

 $n = \dot{\psi} + \Omega \cos \theta$

である。ただし $\dot{\psi}$ は図 (1.2)に示すような関係にある。

図 1.2: 2 つの系での ω と n

1 軸 2 軸の主慣性モーメントを *I*₁, 3 軸の主慣性モーメントを *I*₃ とすると, 角運動量 *L* の各成分は

$$L_{1} = -I_{1}\Omega\sin\theta$$

$$L_{2} = I_{1}\dot{\theta}$$

$$L_{3} = I_{3}n$$
(1.3)

となる。また

$$L_{\rm X} = L_1 \cos \theta + L_3 \sin \theta$$

$$L_{\rm Y} = L_2$$

$$L_{\rm Z} = -L_3 \sin \theta + L_3 \cos \theta$$
(1.4)

(2.3) 式を(2.4) 式に代入して水平面内回転系にすると L は

$$\boldsymbol{L} = \left((I_3 n - I_1 \Omega \cos \theta) \sin \theta, \ I_1 \dot{\theta}, \ I_1 \Omega \sin^2 \theta + I_3 n \cos \theta \right) \tag{1.5}$$

となる。

この L の時間に対する変化は,オイラー方程式

$$\frac{\partial \boldsymbol{L}}{\partial t} + (\boldsymbol{\omega} \times \boldsymbol{L}) = \mathbf{X}_{\mathrm{P}} \times \boldsymbol{R} + \mathbf{F}$$
(1.6)

で与えられる。ここで F は点 P にはたらく摩擦力である。

図 (2.3) は角度 θ が微小角 $\Delta \theta$ 変化したときを描いてある。X',Z' は変化後の水平面内回転系の座標軸 で h' は変化後の重心の高さである。図 (2.3) の点 P 付近を拡大したものが図 (2.4) である。ここで線分 LN に着目すると

$$LN \simeq -X_{\rm P} \Delta \theta \tag{1.7}$$

であり,また

$$LN = OL - ON$$
$$= h - \frac{h'}{\cos(\Delta\theta)}$$

である。 $\Delta\theta\simeq 0$ のとき , $\cos(\Delta\theta)=1$ となることから

$$LN \simeq h - h' = -\Delta h \tag{1.8}$$

ゆえに

$$X_{\rm P} = \frac{dh}{d\theta} \tag{1.9}$$

となる。これを用いると位置ベクトル $X_{P} = (X_{P}, 0, Z_{P})$ の成分は

$$X_{\rm P} = \frac{dh}{d\theta}, \quad Z_{\rm P} = -h(\theta) \tag{1.10}$$

となる。

また , $\boldsymbol{R}+\boldsymbol{F}=(0,F,R)$ であるから

$$X_{\rm P} \times (\boldsymbol{R} + \boldsymbol{F}) = (-Z_{\rm P}F, -RX_{\rm P}, FX_{\rm P})$$
(1.11)

図 1.3: 微小な角度変化 1

図 1.4: 微小な角度変化 2

となり(2.6)式を用いるとオイラー方程式の各成分は

$$\frac{d}{dt}[(I_3n - I_1\Omega\cos\theta)\sin\theta] - I_1\Omega\dot{\theta} = -Z_{\rm P}F$$
(1.12)

$$A\ddot{\theta} + \Omega(I_3 n - I_1 \Omega \cos \theta) \sin \theta = -RX_{\rm P}$$
(1.13)

$$\begin{aligned} A\ddot{\theta} + \Omega(I_3n - I_1\Omega\cos\theta)\sin\theta &= -RX_{\rm P} \\ A\dot{\Omega} + \frac{d}{dt}[(I_3n - I_1\Omega\cos\theta)\cos\theta] &= FX_{\rm P} \end{aligned}$$
(1.13)

と表される。

1.2 ジェレット定数

図 1.5: 逆立ちごま

軸対称物体の回転直立の現象に関係のあるものとして,逆立ちごまがある。逆立ちごまとは球の上部 を切り取って,棒を付けたもので,偏心球となっている。これを回転させると重心が上昇し,上下逆に なり心棒でまわり続ける(図 2.5)。これについては 1952 年に Braams と Hugenholtz によって理論的に 解明されている。それによると逆立ちするためには

・こまと接触面との摩擦が不可欠である。

・接触点がすべって力学的エネルギーが減少しなければならない。

ということが分かっている。このようにエネルギーが保存しない系であるにもかかわらず,ひとつの運動定数が存在する。その運動定数は,角運動量ベクトルLと接触点の位置ベクトルXPとの内積として

$$J = -\boldsymbol{L} \cdot \boldsymbol{X}_{\mathrm{P}} \tag{1.15}$$

で定義される量である。

任意の軸対称物体に対するジェレット定数の時間微分を計算すると

$$\dot{J} = -\dot{L} \cdot X_{\rm P} - L \cdot \dot{X}_{\rm P}$$
$$= (I_3 n - I_1 \Omega \cos \theta) X_{\rm P}^2 \frac{d}{dt} \frac{\sin \theta}{X_{\rm P}}$$
(1.16)

となる。図 2.6 のように軸対称物体の形が半径 r の球であるとき重心が球の中心から a だけずれている

図 1.6: 球の場合の h(θ)

とすると

$$h(\theta) = r - d\cos\theta \tag{1.17}$$

となるので

$$X_{\rm P} = \frac{dh}{d\theta} = a\sin\theta \tag{1.18}$$

となることから, $\dot{J} = 0$ となりJは運動定数となる。

しかし,一般の軸対称物体の場合は」は運動定数とはならない。

剛体の回転直立と形の関係

2006年2月16日

福井大学 工学部 物理工学科

13 年度入学 14 番 木澤 隆之

ゆで卵のような prolate 形や碁石のような oblate 形の剛体を机上において,高速で回転させると立ち 上がる。これは,鉛直軸の角速度を減少させる摩擦力の働きによって,重力に逆らって重心が上がり剛体 が立つと言う現象です。この現象は 100 年以上前から知られており,特に,1952 年に Braams,Hugenholtz 両氏によって偏芯球について完全な厳密解があることがわっかている。さらに,2002 年に Moffatt,下村 両氏によって任意の軸対称形において,近似的な保存量があるとする理論が発表された。

この理論によると、回転する剛体の運動方程式 (オイラー方程式) に対して I_3 を対称軸, I_1 をそれ以 外の軸まわりの慣性モーメント, Ω, n をそれぞれ鉛直軸, 対称軸方向の角速度, θ を鉛直軸と対称軸の なす角度, 重心の高さ h としたとき $I_3n = I_1\Omega\cos\theta$ という近似式が得られます。この近似をジャイロス コピック近似とよび, 剛体の運動方程式を積分する際に用いることによって、ジェレット定数 $J = A\Omega h$ を導出することができる。この定数から鉛直軸の角速度 Ω を減少させる摩擦力の働きによって, h すなわ ち重心を上げ, 剛体が立ち上がることが分かる。

本卒業研究では、任意の軸対称形にとらわれずさまざまな剛体の形において、いかに直立するか検証し て見ることにした。2005年大森氏のプログラムをもとに、剛体の並進・回転運動を表す微分方程式を4 次のルンゲクッタ法を用いて解き、上記の近似を用いずに軸対称・非軸対称物体の回転直立現象を再現 し、その回転直立時間が軸比にどう依存しているか、数値実験によって調べた。さらにその結果をすで に与えられている数式と比較し、Moffatt-下村理論の検証にあたる。

数値計算によるシミュレーションを行い、剛体の回転直立と形がどう関係しているかについて調べて みた。その結果、下図のように球に近い剛体は立ち上がるのが遅く、ある軸比で立ち上がる時間が最小 となり、またさらに変形すると立ち上がるのが遅くなった。

また、3軸不等の剛体でも立ち上がることが分かった。そして、軸対称形・非軸対象形に問わず、必ず最長軸が回転軸になることが分かった。

1.3 ジャイロスコピック近似

軸対称物体の立ち上がり現象を考えるとき,回転が遅いと立ち上がらないので回転が速い場合について考える。オイラー方程式のY成分は

$$I_1\ddot{\theta} - I_1\Omega^2\cos\theta\sin\theta + I_3n\Omega\sin\theta = -RX_{\rm P} \tag{1.19}$$

である。 Ω^2 が大きいとすると, Ω が含まれている左辺の第2項と第3項は右辺の $-RX_P$ よりも十分に大きいとすることができる。次に時間スケールに着目すると軸対称物体が立ち上がる時間は回転で決まる短いものではなく摩擦で決まる長いものであるので $|\ddot{\theta}| \ll \Omega$ とすることができる。よって(1.19)式は近似的に

$$I_3 n - I_1 \Omega \cos \theta = \Omega \sin \theta \tag{1.20}$$

とでき,立ち上がるまでの過程すなわち, $\sin \theta \neq 0$ では

$$I_3 n = I_1 \Omega \cos \theta \tag{1.21}$$

となる。これをジャイロスコピック近似とよぶ。

このジャイロスコピック近似を取り入れると(1.16)式は $\dot{J}=0$ となりJは運動定数となる。また(1.5)式で与えられる角運動量Lは

$$\boldsymbol{L} = (0, \, I_1 \dot{\theta} \, I_1 \Omega) \tag{1.22}$$

となる。したがって (1.15) 式から

$$J = -(-h(\theta) \cdot I_1 \Omega)$$

= $A\Omega h$ (1.23)

となる。

また,オイラー方程式のX成分,(1.12)式は

$$I_1 \Omega \dot{\theta} = F Z_{\rm P} \tag{1.24}$$

となる。そして Z 成分, (1.14) 式は

$$I_1 \dot{\Omega} = F X_{\rm P} \tag{1.25}$$

となり (1.24), (1.25) 式から

$$\frac{\dot{\Omega}}{\Omega} = \frac{X_{\rm P}}{Z_{\rm P}} \dot{\theta} = -\frac{\dot{h}}{h} \tag{1.26}$$

が導かれる。この (1.26) 式を積分すると $\Omega h = - 定$ となる。また (1.8) 式, (1.23) 式, (1.24) 式より任意の軸対称物体の θ に対するジャイロスコピック近似を用いた方程式は

$$J\dot{\theta} = -Fh^2(\theta) \tag{1.27}$$

という簡単な1階の微分方程式となる。

ここで軸対称物体と床との接触点 P での摩擦係数を μ , すべり速度を $V_{\rm P}$ としてクーロン摩擦力を仮定すると, 摩擦力 F は

$$F = -\mu M g \frac{V_{\rm P}}{|V_{\rm P}|} \tag{1.28}$$

で与えられる。

 $V_{\rm P}$ は剛体の角運動量 ω と接触点 P の位置ベクトル $X_{\rm P}$ との外積で表すことができる。すなわち

$$V_{\rm P} = \boldsymbol{\omega} \times \boldsymbol{X}_{P}$$

= $(\Omega \sin^2 \theta + n \cos \theta) \frac{dh}{d\theta} + (n - \Omega \cos \theta) h(\theta) \sin \theta$ (1.29)

である。 $\beta(\theta)=(\sin^2\theta+(I_1/I_3)\cos^2\theta)^{-1/2}$ として(1.21)式,(1.23)式をもちいて(1.29)式の V_P を書き換えると次のようになる。

$$V_{\rm P} = \frac{J}{I_1} \beta^{-3} h^{-1} \frac{d(\beta h)}{d\theta}$$

$$\tag{1.30}$$

 $F \ge V_P$ の関係は分かっているものとし, $h(\theta)$ も幾何学的な考察から分かっているとするとき (2.27) 式を積分することで θ は tの関数として求まる。

1.4 回転楕円体の場合

ここでは密度が一様な回転楕円体の場合に (1.25) 式を積分してみる。回転楕円体の対称軸方向の半径 a,それと垂直な方向の半径をb,質量をM,密度を ρ とする。この回転楕円体は

$$a^2(x^2 + y^2) + b^2 z^2 = a^2 b^2$$

と表すことができる。このときの対称軸 (ζ 軸) まわりの慣性モーメントは

$$I_{3} = \int_{V} \rho(\xi^{2} + \eta^{2}) d\xi d\eta d\zeta$$

$$= 2\rho \int d\eta \int d\zeta \int \xi^{2} d\xi$$

$$= 2\rho \int_{0}^{b} r^{2} dr \int_{0}^{\pi} \sin \theta d\theta \int_{0}^{2\pi} d\phi (r \sin \theta \cos \phi)^{2}$$

$$= 2\rho \int_{0}^{b} r^{4} dr \int_{0}^{\pi} \sin^{3} \theta d\theta \int_{0}^{2\pi} \cos^{2} \phi d\phi$$

$$= 2Mb^{2}/5 \qquad (1.31)$$

同様にして

$$I_1 = I_2 = M(a+b)^2/5 (1.32)$$

となる。楕円体上の点 (x₀, 0, z₀) において

図 1.7: 重心の高さ h(θ)

$$\left(\frac{z_0}{a}\right)^2 + \left(\frac{x_0}{b}\right)^2 = 1 \tag{1.33}$$

であるが,両辺を微分すると

$$\frac{z}{a^2}dz + \frac{x}{b^2}dx = 0$$
(1.34)

となるから点 $(x_0, 0, z_0)$ における接線の式は

$$\frac{z_0}{a^2}(z-z_0) + \frac{x_0}{b^2}(x-x_0) = 0$$

$$\Rightarrow \frac{z_0}{a^2}z + \frac{x_0}{b^2}x = \left(\frac{z_0}{a}\right)^2 + \left(\frac{x_0}{b}\right)^2 = 1$$
(1.35)

であり, この接線と原点 O との距離が h であるから図 1.7 からわかるように

$$h(\theta) = \frac{a^2}{z_0} \cos \theta = \frac{b^2}{x_0} \sin \theta \tag{1.36}$$

である。(2.33) 式と(2.36) 式から

$$h(\theta) = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} \tag{1.37}$$

となる。このときの P 点すべり速度は

$$V_{\rm P} = -\left(\frac{J}{4Ah^2}(a^2 - b^2)\sin 2\theta\right)$$
(1.38)

と簡単になり, クーロン摩擦力を仮定する式を積分すると

$$\tan \theta = (a/b) \tan \mu q(t - t_0) \tag{1.39}$$

となる。ただし q = Mgab(a - b)/|a - b||J| であり, t_0 は積分定数である。

1.5 Moffatt -下村理論のまとめと更なる課題

Moffatt_下村理論から任意の軸対称形において回転直立することは理解できる。しかし,Moffatt下村 理論の仮定するジャイロスコピック近似は必ずしも良い精度で成り立つ保証はない。そこで本研究では, 直立に要する時間が軸比にどう依存するか,またそれが卵形のような prolate 形と碁石のような oblate 形 でどのように違うかを数値シミュレーションで調べ,その結果を(1.39)式と比較することで Moffatt_下 村理論の検証をしたいと考える。さらに、軸対称性を破ると何が起こるかについても非常に興味をもつ ところである。以上の点について更なる研究が必要でないかと感じた。

第2章 数値シュミレーションによる剛体の回転 直立と形の関係

2.1 剛体の形状

剛体の形状は楕円体とする。慣性主軸系での座標を (ξ, η, ζ) とすると表面方程式は

$$\left(\frac{\xi}{R_1}\right)^2 + \left(\frac{\eta}{R_2}\right)^2 + \left(\frac{\zeta}{R_3}\right)^2 = 1$$
(2.1)

である。

体積 $V = \frac{4\pi}{3} R_a R_b R_c$ が半径 R_{00} の球の体積に等しくなるように R_a, R_b, R_c を決めることにする。 このようにして主軸方向の半径 R_0 を決めるとすると

$$R_0 = \frac{R_{00}}{(R_1' R_2' R_3')^{1/3}}$$
(2.2)

$$\begin{cases}
R_1 = R_0 R'_1 \\
R_2 = R_0 R'_2 \\
R_3 = R_0 R'_3
\end{cases}$$
(2.3)

と決めることで実現される。 実際このとき体積は

$$V = \frac{4\pi}{3}R_1R_2R_3 = \frac{4\pi}{3}R_0^3R_1'R_2'R_3' = \frac{4\pi}{3}R_{00}^3$$
(2.4)

となる。

図 2.1: R_a: R_b: R_cの剛体

2.2 初期条件

図 2.2 の様に,x,y,z 成分の L 系と 1,2,3 成分の B 系の座標軸をとり,3 軸と xy 面のなす角を θ とおく と,B 系の単位方向ベクトル e_1, e_2, e_3 は L 系で表すと,

$$(\vec{e_1})_x = 1.0$$
 $(\vec{e_1})_y = 0.0$ $(\vec{e_1})_z = 0.0$ (2.5)

$$(\vec{e_2})_x = 0.0$$
 $(\vec{e_2})_y = \cos\theta$ $(\vec{e_2})_z = -\sin\theta$ (2.6)

 $(\vec{e_3})_x = 0.0$ $(\vec{e_3})_y = \sin\theta$ $(\vec{e_3})_z = \cos\theta$ (2.7)

となる。

図 2.2: e₁,e₂,e₃の剛体

図 2.3: 軸比による重心の高さの時間変化(1)

まず、さまざまな軸比においての重心座標の Z 成分を調べた。図 2.3 の横軸は時刻 [sec], 縦軸は重心 の高さ [cm] の値である。

この時の諸条件は以下のとおりである。

・剛体の形状	楕円体
·半径	$R_{00}=2.0[ext{cm}]$ とし $R_1:R_2:R_3$ を与え (2.2) 式 (2.3) 式をみたす値
·楕円体の質量	$m = V \rho[\mathbf{g}], \qquad \rho = 1[\mathbf{g/cm^3}]$
·初期回転角速度	$100\pi \ [rad/s]$
·摩擦係数	$\mu = 0.5 \ [\mathrm{cm/s^2}]$
フニップ后	A + 0.0001[]

·ステップ幅 $\Delta t=0.0001[sec]$

·3軸の水平方向とのなす角度の初期値 0.0122[rad]

図 2.4: 剛体の立ち上がりと軸比の関係 (1)

まず、prolate 形では、すべてにおいて最長軸である3軸が回転軸となった。図2.4 は、軸比の変化による立ち上がりの時間を示したものである。ただし、 $\theta = 5$ のときに立ち上がったとした。横軸は3軸の軸比1:1:R₃であり、縦軸は時刻[sec]の値である。まず、この図から、剛体が立ち上がるまでの時間は、球に近い形では立ちあがるまでに時間がかかり、1:1:1:1.6 あたりで立ち上がるまでの時間が最小になり、以後徐々に遅くなることが分かった。グラフが直線的にでないのは、剛体がジャンプすることが原因だと思われる。この結果を(1.39) 式と比較することは、今後の課題として残しておく。

図 2.5: 軸比による重心の高さの時間変化 (2)

次に、さまざまな軸比においての重心座標の Z 成分を調べた。図 2.5 の横軸は時刻 [sec], 縦軸は重心の 高さ [cm] の値である。

この時の諸条件は以下のとおりである。

・剛体の形状	楕円体
·半径	$R_{00}=2.0[{ m cm}]$ とし $R_1:R_2:R_3$ を与え (2.2) 式 $,(2.3)$ 式をみたす値
・楕円体の質量	$m = V \rho[\mathbf{g}], \qquad \rho = 1[\mathbf{g/cm^3}]$
·初期回転角速度	$100\pi [rad/s]$

- ·摩擦係数
- ・ステップ幅 Δ t=0.0001[sec]

·3軸の水平方向とのなす角度の初期値 0.0122[rad]

 $\mu = 0.5 \ [\rm cm/s^2]$

図 2.6: 剛体の立ち上がりと軸比の関係 (2)

次に oblate 形においては、すべてにおいて最長軸である 1 軸、もしくは 3 軸が回転軸となった。図 2.6 は軸比の変化による立ち上がりの時間を示したものである。ただし、 $\theta = 5$ のときに立ち上がったとし た。横軸は 2 軸の軸比 1:R₂:1 であり、、縦軸は時刻 [sec] の値である。この図から、剛体が立ち上がるまで の時間は、球に近い形では立ちあがるまでに時間がかかり、1:0.75:1 付近で立ち上がるまでの時間が 最小となり、以後徐々に遅くなることが分かった。これもグラフが直線的にでないのは、剛体がジャン プすることが原因だと思われる。この結果を (1.39) 式と比較することは、今後の課題として残しておく。

図 2.7: 軸比による重心の高さの時間変化 (3)

次に、三軸不等の軸比においての重心座標のZ成分を調べた。図2.7の横軸は時刻[sec],縦軸は重心の 高さ[cm]の値である。

この時の諸条件は以下のとおりである。

・剛体の形状	三軸不等の剛体
·半径	$R_{00}=2.0[ext{cm}]$ とし $R_1:R_2:R_3$ を与え (2.2) 式 (2.3) 式をみたす値
・剛体の質量	$m = V \rho[\mathbf{g}], \qquad \rho = 1[\mathbf{g}/\mathrm{cm}^3]$
·初期回転角速度	$100\pi \text{ [rad/s]}$
·摩擦係数	$\mu=0.5~[{\rm cm/s^2}]$
・ステップ幅	Δ t=0.0001[sec]
・3 軸の水平方向とのな	よす角度の初期値 0.0122[rad]

図 2.8: 剛体の立ち上がりと軸比の関係 (3)

三軸不等においても、すべてにおいて最長軸である3軸が回転軸となった。図 2.8 軸比の変化による立ち上がりの時間を示したものである。ただし, $\theta = 5$ °のときに立ち上がったとした。横軸は軸比を 6-R₂:R₂:4 としたときの R₂, 縦軸は時刻 [sec] の値である。この図から、剛体が立ち上がるまでの時間は、球に近い形では立ちあがるまでに時間がかかり、2 軸の軸比が大きいほうが立ち上がるまでの時間が短 いことが分かる。これもグラフが直線的にでないのは、剛体がジャンプすることが原因だと思われる。この結果を (1.39) 式と比較することは、今後の課題として残しておく。

第3章 結論

数値計算によるシミュレーションを行い、剛体の回転直立と形がどう関係しているかについて調べて みた。その結果、球に近い剛体は立ち上がるのが遅く、ある軸比で立ち上がる時間が最小となり、また さらに変形すると立ち上がるのが遅くなった。

また、3軸不等の剛体でも立ち上がることが分かった。そして、軸対称形・非軸対象形に問わず、必ず最長軸が回転軸になることが分かった。

参考文献

- H.K.Moffatt and Y.Shimomura: Spinning eggs a paradox resolved, Nature 416,385-386(2002).
- [2] 下村裕:「立ち上がる回転ゆで卵の解」パリティ, 18,52-56(2003).
- [3] 戸田盛和:「回転する卵はなぜ直立する」科学(岩波書店), 72,932-939(2002).
- [4] 小井出昭一郎:「力学」岩波書店, pp.90-165(1987).
- [5] 戸田盛和:「力学」岩波書店, pp.144-188(1982).
- [6] 村井興平:「卵を回すとなぜ立つか」,福井大学工学部 物理工学科 卒業研究 (2004).
- [7] 大森英胤:「卵を回すとなぜ立つか2」,福井大学工学部 物理工学科 卒業研究 (2005).

謝辞

本論文を作成するにあたり,田嶋直樹先生には終始御厚いご指導を賜わりましたことを感謝し,御礼 申し上げます。また鈴木敏男先生,林明久先生にも,多方面にわたり御指導して頂いたことを併せて御 礼申し上げます。

本研究に対してご意見を頂いた,多くの物理工学科先生方ならびに支えてくださったみなさまにはお 詫びとともに、感謝の気持ちを捧げ、謝辞の言葉とさせて頂きます。

付録 Program List

プログラムは昨年度の大森英胤氏の卒業研究 [7] に使用したものをもとに以下の改良を加えた。囚の部分は,軸比を変化させる ために (1)prolate 形 (2)oblate 形 (3) 比軸対称 として付け加えた。 図は剛体の立ち上がった状態を仮定するために (1)prolate 形 (2)oblate 形 (3) 比軸対称 として改良した。

囚の部分の説明

```
    (1)prolate 形については R<sub>3</sub> 軸の比が 1.1 ~ 10 まで値が変化できるように改良した。
    (2)oblate 形については R<sub>2</sub> 軸の比が 0.01 ~ 0.99 まで値が変化できるように改良した。
    (3) 比軸対称形については R<sub>1</sub> 軸の比が 3.01 ~ 3.99R<sub>2</sub> 軸の比が 2.01 ~ 2.99 まで値が変化できるように改良した。
```

Bの部分の説明

実験室系(x, y, z)から見た重心系(a, b, c)の単位ベクトルを次のように定義すると

```
ea = (1, 0, 0)
                                          eb = (0, \cos \theta, -\sin \theta)
                                          ec = (0, \sin \theta, \cos \theta)
(1)prolate 形については ec_z = \cos \theta = 0.9962 つまり \theta = 5 °で立ち上がると仮定した。
(2)oblate 形については eb_z = -\sin\theta = -0.0872 つまり \theta = 5 °で立ち上がると仮定した。
(3) 非軸対称形形については ec_z = \cos \theta = -0.9962 つまり \theta = 5 °で立ち上がると仮定した。
      /*
     kaiten7(c&d&e).c
      */
      #include <stdio.h>
      #include <math.h>
      /*method = 0 : Euler method, 1 : 4th-order Runge-Kutta method */
      #define METHOD 1
      typedef struct { double x; double y; double z; } Lvec; /* vector in L-frame */
      typedef struct { double a; double b; double c; } Bvec; /* vector in B-frame */
      typedef struct { double x; double y; double z; double a; double b; double c; }
          LBvec; /* vector whose components both in L- and B-frames are necessary */
      int forces(Lvec *rc, Lvec *vc, Bvec *omg, Lvec *ea, Lvec *eb, Lvec *ec,
                Lvec *frc, LBvec *trq);
      int normal_point(Bvec *n, Bvec *tp);
      /*void init1(Lvec *ea, Lvec *eb, Lvec *ec, Bvec *omg0, Lvec *rc, Lvec *vc);*/
      void init2(Lvec *ea, Lvec *eb, Lvec *ec, Bvec *omg0, Lvec *rc, Lvec *vc);
      const double pi = 3.141592653589793;
     main(){
       kaiten5();
      }
                       /* radius in the principal axes */
        Bvec R:
        double mass; /* total mass of the rigid body */
```

```
double volume; /* volume of the rigid body */
  const double g_gravity = 980.0; /* gravitational acceleration [cm/s^2] */
int kaiten5(){
  Bvec radius_ratio ; /* relative lengths of principal axes */
  double R00=2.0 ;
                              /* radius for shperical shape [cm] */
                              /* density [g/cm^3] */
  double density=1;
 Lvec ea /*= { 0.0, 0.0,-1.0}*/ ; /* unit vector for a-axis of B-frame */
 Lvec eb /*= {-1.0, 0.0, 0.0}*/ ; /* unit vector for b-axis of B-frame */
 Lvec ec /*= { 0.0, 1.0, 0.0}*/ ; /* unit vector for c-axis of B-frame */
  double dt:
                       /* time step size [sec] */
  /*double max_t=30.0;*/
  double max_itime=300000;
                              /* the number of time steps */
        mprint=100;
                           /* period to print the mechanical state */
  int
  Bvec moi;
                       /* moment of inertia */
 Bvec omg0;
                       /* initial angular velocity vector, B-frame */
 Bvec omg;
                       /* angular velocity vector, B-frame */
  double omgsize;
  double omg_gosa;
 Bvec omgm;
                       /* for Runge Kutta */
 double R0 ;
 double t,fct;
 double minimum_height ;
 double eng_tot, eng_rot, eng_tra, eng_gra;
 Lvec rc ; /* center of mass coordinate, =(0,0,0) in B-frame */
 Lvec vc ; /* velocity of center of mass, =(0,0,0) in B-frame */
 Bvec tp ; /* tangential point */
 Lvec dtp ; /* displacement from center of mass to tangential point */
 Lvec vtp ; /* velocity of tangential point */
  Lvec evtp ; /* unit vector parallel to velocity of tangential point */
  Lvec frc ; /* total force */
 LBvec trq ; /* Toruque as for center of mass */
  double d_eng_tot;
  double d_omgsize;
  double f1,f2,f3,fn1,fn2,fn3;
 Lvec eam, ebm, ecm; /* for Runge Kutta */
 Lvec rcm, vcm; /* for Runge Kutta */
  double e1dx,e1dy,e1dz, e2dx,e2dy,e2dz, e3dx,e3dy,e3dz;
 double kx,ky,kz, kax,kay,kaz, kbx,kby,kbz, kcx,kcy,kcz;
  double krx, kry, krz, kvx, kvy, kvz;
  double k1x ,k1y ,k1z , k2x ,k2y ,k2z , k3x ,k3y ,k3z , k4x ,k4y ,k4z ;
  double k1ax,k1ay,k1az, k2ax,k2ay,k2az, k3ax,k3ay,k3az, k4ax,k4ay,k4az;
  double k1bx,k1by,k1bz, k2bx,k2by,k2bz, k3bx,k3by,k3bz, k4bx,k4by,k4bz;
  double k1cx,k1cy,k1cz, k2cx,k2cy,k2cz, k3cx,k3cy,k3cz, k4cx,k4cy,k4cz;
  double k1rx,k1ry,k1rz, k2rx,k2ry,k2rz, k3rx,k3ry,k3rz, k4rx,k4ry,k4rz;
  double k1vx,k1vy,k1vz, k2vx,k2vy,k2vz, k3vx,k3vy,k3vz, k4vx,k4vy,k4vz;
                /* counter of time step, taking 0..max_itime */
  int itime:
  double Jellett;
                     /* Jellett constant */
  Bvec mez;
 FILE *log_res1; /* output for detailed graphs */
 FILE *log_res2; /* output for detailed graphs */
 FILE *log_chk1; /* output for check */
 FILE *log_res3;
 FILE *log_res4;
```

```
27
```

```
FILE *log_res5;
FILE *log_res6;
FILE *log_res7;
Lvec angmom; /* angular momentum in L-frame */
double angmomsize;
double F1,F2,F3;
int k;
/* log_res1 = NULL;*/ log_res1=fopen("kaiten.g1","w");
/* log_res2 = NULL;*/ log_res2=fopen("kaiten.g2","w");
log_chk1 = NULL; /*log_chk1=fopen("kaiten.g2","w");
/* log_res3 = NULL; */ log_res3=fopen("kaiten.g3","w");
/* log_res4 = NULL; */ log_res4=fopen("kaiten.g4","w");
/* log_res7 = NULL */ log_res7=fopen("kaiten.g7","w");
```

fprintf(stderr,"check : pi = %20.16f\n",pi);

```
(1) for(k=1;k<=90;k++){
    radius_ratio.c=1+k*0.1;
    radius_ratio.a=1.0;
    radius_ratio.b=1.0;
(2) for(k=1;k<=99;k++){
    radius_ratio.b=k*0.01;
    radius_ratio.a=1.0;
    radius_ratio.c=1.0;
(3) for(k=1;k<=99;k++){</pre>
```

radius_ratio.a=3.0+(0.01*k); radius_ratio.b=3.0-(0.01*k); radius_ratio.c=4.0;

fprintf(stderr,"radius ratio = 1:1:? ",radius_ratio.a,radius_ratio.b,radius_ratio.c);

А

```
R0=R00/pow(radius_ratio.a*radius_ratio.b*radius_ratio.c,1.0/3.0);
R.a=R0*radius_ratio.a; R.b=R0*radius_ratio.b; R.c=R0*radius_ratio.c;
if(R.a < R.b) minimum_height=R.a; else minimum_height = R.b;
if(R.c < minimum_height) minimum_height = R.c;
fprintf(stderr,"R=(%f %f %f) min=%f\n",R.a,R.b,R.c,minimum_height);
volume=4*pi*R.a*R.b*R.c/3; /* volume of the rigid body [cm^3] */
mass=density*volume;
fprintf(stderr,"volume=%f density=%f mass=%f\n",volume,density,mass);
moi.a=mass*(R.b*R.b+R.c+R.a*R.a)/5;
moi.c=mass*(R.a*R.a*R.b*R.b)/5;
```

```
fprintf(stderr,"MOI=(%f %f %f)\n",moi.a,moi.b,moi.c);
```

```
f1=(moi.b-moi.c)/moi.a; f2=(moi.c-moi.a)/moi.b; f3=(moi.a-moi.b)/moi.c;
fn1=1/moi.a; fn2=1/moi.b; fn3=1/moi.c;
dt=1.0e-6;
// fprintf(stderr,"input dt=");
// scanf("%lf",&dt);
fprintf(stderr,"check dt=%e\n",dt);
max_itime=3/dt;
mprint=0.001/dt; if(mprint<1) mprint++;</pre>
fprintf(stderr,"max_itime=%f mprint=%d\n",max_itime,mprint);
/*init1(&ea, &eb, &ec, &omg0, &rc ,&vc);*/
init2(&ea, &eb, &ec, &omg0, &rc ,&vc);
fprintf(stderr,"rc.z=%f\n",rc.z);
fprintf(stderr,"%s\n ec - (ea x eb) =(%e %e %e)\n"
 ,"check of right-handedness of vectors {ea,eb,ec}:"
 ,ec.x - (ea.y*eb.z-ea.z*eb.y)
 ,ec.y - (ea.z*eb.x-ea.x*eb.z)
 ,ec.z - (ea.x*eb.y-ea.y*eb.x));
omg.a=omg0.a; omg.b=omg0.b; omg.c=omg0.c;
for(itime=0;;itime++){ t=itime*dt;
  angmom.x=moi.a*omg.a*ea.x + moi.b*omg.b*eb.x + moi.c*omg.c*ec.x ;
 angmom.y=moi.a*omg.a*ea.y + moi.b*omg.b*eb.y + moi.c*omg.c*ec.y ;
 angmom.z=moi.a*omg.a*ea.z + moi.b*omg.b*eb.z + moi.c*omg.c*ec.z ;
 angmomsize=sqrt(angmom.x*angmom.x + angmom.y*angmom.y + angmom.z*angmom.z);
 omgsize = sqrt(omg.a*omg.a + omg.b*omg.b + omg.c*omg.c);
 eng_rot = (moi.a*omg.a*omg.a + moi.b*omg.b*omg.b + moi.c*omg.c*omg.c)*0.5 ;
 eng_tra = (0.5*mass)*(vc.x*vc.x + vc.y*vc.y + vc.z*vc.z) ;
 eng_gra = (mass*g_gravity)*(rc.z-minimum_height);
 eng_tot = eng_rot + eng_tra + eng_gra;
 if(itime==0) fprintf(stderr,"eng_tot=%f\n",eng_tot);
 if(log_res1 != NULL && itime % mprint == 0)
 ,t,omg.a,omg.b,omg.c,ea.x,ea.y,ea.z,eb.x,eb.y,eb.z,ec.x,ec.y,ec.z
  ,rc.x,rc.y,rc.z,vc.x,vc.y,vc.z);
```

d_eng_tot=eng_tot-2841751.291223551612347364;

- (1) if(fabs(ec.z) > 0.8 || itime >= max_itime) {
 fprintf(log_res7,"%f %f\n", radius_ratio.c,t);
 if(fabs(ec.z) > 0.8) {printf("OK ");}
 else {printf("NG ");}
 fprintf(stderr,"%f %f\n", radius_ratio.c,t);
- (2) if(fabs(eb.z) < 0.1 || itime >= max_itime) {
 fprintf(log_res7,"%f %f\n", radius_ratio.b,t);
 if(fabs(eb.z) < 0.1) {printf("OK ");}
 else {printf("NG ");}
 fprintf(stderr,"%f %f\n", radius_ratio.b,t);</pre>
- (3) if(fabs(ec.z) < (-0.8) || itime >= max_itime) {
 fprintf(log_res7,"%f %f\n", radius_ratio.b,t);
 if(fabs(ec.z) < (-0.8)) {printf("OK ");}
 else {printf("NG ");}
 fprintf(stderr,"%f %f\n", radius_ratio.b,t);</pre>

```
break;
   }
   /*if(t==0.2) {
     fprintf(stderr,"eng=%30.18f,omega=%f\n",eng_tot,omgsize);
     fprintf(log_res3,"%30.18f %20.18f\n",dt,fabs(d_eng_tot));
     fprintf(log_res4,"%30.18f %30.18f\n",dt,fabs(d_omgsize));
     }*/
/*jellett constant*/
   mez.a=-ea.z; mez.b=-eb.z; mez.c=-ec.z;
    /*fprintf(stderr,"mez(%f %f %f)\n",mez.a,mez.b,mez.c);*/
   normal_point(&mez,&tp);
   Jellett=-(moi.a*omg.a*tp.a + moi.b*omg.b*tp.b + moi.c*omg.c*tp.c);
   if(itime%mprint==0) fprintf(log_res3,"%f %f\n",t,Jellett);
/*Gyroscopic balance*/
   F1= moi.c * omg.c;
  F2 = moi.a * ec.z*(ec.x*(omg.b*ea.y-omg.a*eb.y)-ec.y*(omg.b*ea.x-omg.a*eb.x))/(ec.x*ec.x+ec.y*ec.y);
  F3=F1-F2;
```

B

```
if (itime%mprint==0) fprintf(log_res4,"%f %f %f\n",t,F1,F2);
  /*if (itime%mprint==0) fprintf(log_res4,"%f %f\n",t,fabs(F3));*/
  /*if(itime%mprint==0) fprintf(log_res4,"%f %f\n",t,fabs((2*F3)/(F1+F2)));*/
/*Omega Size*/
  if(t==0) fprintf(stderr,"init OMG=%f\n",omgsize);
  /*if (t>2.4228) {fprintf(stderr,"omg=%f\n",omgsize); break;}*/
   if(log_chk1 != NULL && itime % mprint == 0){
/*
     fprintf(log_chk1,"%f %e %e %e %e %e %e %e %e n",t,
     ea.x*ea.x + ea.y*ea.y + ea.z*ea.z -1.0,
     eb.x*eb.x + eb.y*eb.y + eb.z*eb.z -1.0,
     ec.x*ec.x + ec.y*ec.y + ec.z*ec.z -1.0,
     ea.x*eb.x + ea.y*eb.y + ea.z*eb.z
     eb.x*ec.x + eb.y*ec.y + eb.z*ec.z
     ec.x*ea.x + ec.y*ea.y + ec.z*ea.z
                                         );
*/
     fprintf(log_chk1,"%f %e\n",t,
       fabs(ea.x*eb.x + ea.y*eb.y + ea.z*eb.z)
      +fabs(eb.x*ec.x + eb.y*ec.y + eb.z*ec.z)
      +fabs(ec.x*ea.x + ec.y*ea.y + ec.z*ea.z)
     );
   }
   if(itime >= max_itime) break;
   forces(&rc, &vc, &omg, &ea, &eb, &ec, &frc, &trq);
   if(log_res2 != NULL && itime % mprint == 0)
   ,t,angmom.x,angmom.y,angmom.z,angmomsize,omgsize
    ,eng_rot,eng_tra,eng_gra,eng_tot
    ,frc.x,frc.y,frc.z, trq.x,trq.y,trq.z, trq.a,trq.b,trq.c);
   k1x=dt*(f1*omg.b*omg.c+fn1*trq.a);
   k1y=dt*(f2*omg.c*omg.a+fn2*trq.b);
   k1z=dt*(f3*omg.a*omg.b+fn3*trq.c);
   k1ax=dt*(omg.c*eb.x-omg.b*ec.x);
   k1ay=dt*(omg.c*eb.y-omg.b*ec.y);
   k1az=dt*(omg.c*eb.z-omg.b*ec.z);
   k1bx=dt*(omg.a*ec.x-omg.c*ea.x);
   k1by=dt*(omg.a*ec.y-omg.c*ea.y);
   k1bz=dt*(omg.a*ec.z-omg.c*ea.z);
   k1cx=dt*(omg.b*ea.x-omg.a*eb.x);
   k1cy=dt*(omg.b*ea.y-omg.a*eb.y);
   k1cz=dt*(omg.b*ea.z-omg.a*eb.z);
   k1rx=dt*vc.x;
   k1ry=dt*vc.y;
   k1rz=dt*vc.z;
   k1vx=(dt/mass)*frc.x;
   k1vy=(dt/mass)*frc.y;
   k1vz=(dt/mass)*frc.z;
```

```
omgm.a=omg.a+k1x/2; omgm.b=omg.b+k1y/2; omgm.c=omg.c+k1z/2;
eam.x=ea.x+k1ax/2; eam.y=ea.y+k1ay/2; eam.z=ea.z+k1az/2;
ebm.x=eb.x+k1bx/2; ebm.y=eb.y+k1by/2; ebm.z=eb.z+k1bz/2;
ecm.x=ec.x+k1cx/2; ecm.y=ec.y+k1cy/2; ecm.z=ec.z+k1cz/2;
rcm.x=rc.x+k1rx/2; rcm.y=rc.y+k1ry/2; rcm.z=rc.z+k1rz/2;
vcm.x=vc.x+k1vx/2; vcm.y=vc.y+k1vy/2; vcm.z=vc.z+k1vz/2;
     printf("%f %f %f %f \n",vc.z,frc.z,k1vz,vcm.z);*/
/*
forces(&rcm, &vcm, &omgm, &eam, &ebm, &ecm, &frc, &trq);
k2x=dt*(f1*omgm.b*omgm.c+fn1*trq.a);
k2y=dt*(f2*omgm.c*omgm.a+fn2*trq.b);
k2z=dt*(f3*omgm.a*omgm.b+fn3*trq.c);
k2ax=dt*(omgm.c*ebm.x-omgm.b*ecm.x);
k2ay=dt*(omgm.c*ebm.y-omgm.b*ecm.y);
k2az=dt*(omgm.c*ebm.z-omgm.b*ecm.z);
k2bx=dt*(omgm.a*ecm.x-omgm.c*eam.x);
k2by=dt*(omgm.a*ecm.y-omgm.c*eam.y);
k2bz=dt*(omgm.a*ecm.z-omgm.c*eam.z);
k2cx=dt*(omgm.b*eam.x-omgm.a*ebm.x);
k2cy=dt*(omgm.b*eam.y-omgm.a*ebm.y);
k2cz=dt*(omgm.b*eam.z-omgm.a*ebm.z);
k2rx=dt*vcm.x;
k2ry=dt*vcm.y;
k2rz=dt*vcm.z;
k2vx=(dt/mass)*frc.x;
k2vy=(dt/mass)*frc.y;
k2vz=(dt/mass)*frc.z;
omgm.a=omg.a+k2x/2; omgm.b=omg.b+k2y/2; omgm.c=omg.c+k2z/2;
eam.x=ea.x+k2ax/2; eam.y=ea.y+k2ay/2; eam.z=ea.z+k2az/2;
ebm.x=eb.x+k2bx/2; ebm.y=eb.y+k2by/2; ebm.z=eb.z+k2bz/2;
ecm.x=ec.x+k2cx/2; ecm.y=ec.y+k2cy/2; ecm.z=ec.z+k2cz/2;
rcm.x=rc.x+k2rx/2; rcm.y=rc.y+k2ry/2; rcm.z=rc.z+k2rz/2;
vcm.x=vc.x+k2vx/2; vcm.y=vc.y+k2vy/2; vcm.z=vc.z+k2vz/2;
/* printf("%f %f %f %f %f %f %f n",rcm.z,k2rz,vc.z,frc.z,k2vz,vcm.z);*/
forces(&rcm, &vcm, &omgm, &eam, &ebm, &ecm, &frc, &trq);
k3x=dt*(f1*omgm.b*omgm.c+fn1*trq.a);
k3y=dt*(f2*omgm.c*omgm.a+fn2*trq.b);
k3z=dt*(f3*omgm.a*omgm.b+fn3*trq.c);
k3ax=dt*(omgm.c*ebm.x-omgm.b*ecm.x);
k3ay=dt*(omgm.c*ebm.y-omgm.b*ecm.y);
k3az=dt*(omgm.c*ebm.z-omgm.b*ecm.z);
k3bx=dt*(omgm.a*ecm.x-omgm.c*eam.x);
k3by=dt*(omgm.a*ecm.y-omgm.c*eam.y);
k3bz=dt*(omgm.a*ecm.z-omgm.c*eam.z);
k3cx=dt*(omgm.b*eam.x-omgm.a*ebm.x);
k3cy=dt*(omgm.b*eam.y-omgm.a*ebm.y);
```

```
k3cz=dt*(omgm.b*eam.z-omgm.a*ebm.z);
k3rx=dt*vcm.x;
k3ry=dt*vcm.y;
k3rz=dt*vcm.z;
k3vx=(dt/mass)*frc.x;
k3vy=(dt/mass)*frc.y;
k3vz=(dt/mass)*frc.z;
omgm.a=omg.a+k3x; omgm.b=omg.b+k3y; omgm.c=omg.c+k3z;
eam.x=ea.x+k3ax; eam.y=ea.y+k3ay; eam.z=ea.z+k3az;
ebm.x=eb.x+k3bx; ebm.y=eb.y+k3by; ebm.z=eb.z+k3bz;
ecm.x=ec.x+k3cx; ecm.y=ec.y+k3cy; ecm.z=ec.z+k3cz;
rcm.x=rc.x+k3rx; rcm.y=rc.y+k3ry; rcm.z=rc.z+k3rz;
vcm.x=vc.x+k3vx; vcm.y=vc.y+k3vy; vcm.z=vc.z+k3vz;
/*
      printf("%f %f %f %f %f %f %f \n",rcm.z,k3rz,vc.z,frc.z,k3vz,vcm.z);*/
forces(&rcm, &vcm, &omgm, &eam, &ebm, &ecm, &frc, &trq);
k4x=dt*(f1*omgm.b*omgm.c+fn1*trq.a);
k4y=dt*(f2*omgm.c*omgm.a+fn2*trq.b);
k4z=dt*(f3*omgm.a*omgm.b+fn3*trq.c);
k4ax=dt*(omgm.c*ebm.x-omgm.b*ecm.x);
k4ay=dt*(omgm.c*ebm.y-omgm.b*ecm.y);
k4az=dt*(omgm.c*ebm.z-omgm.b*ecm.z);
k4bx=dt*(omgm.a*ecm.x-omgm.c*eam.x);
k4by=dt*(omgm.a*ecm.y-omgm.c*eam.y);
k4bz=dt*(omgm.a*ecm.z-omgm.c*eam.z);
k4cx=dt*(omgm.b*eam.x-omgm.a*ebm.x);
k4cy=dt*(omgm.b*eam.y-omgm.a*ebm.y);
k4cz=dt*(omgm.b*eam.z-omgm.a*ebm.z);
k4rx=dt*vcm.x;
k4ry=dt*vcm.y;
k4rz=dt*vcm.z;
k4vx=(dt/mass)*frc.x;
k4vy=(dt/mass)*frc.y;
k4vz=(dt/mass)*frc.z;
kx=(k1x+2*(k2x+k3x)+k4x)*(1.0/6.0);
ky=(k1y+2*(k2y+k3y)+k4y)*(1.0/6.0);
kz=(k1z+2*(k2z+k3z)+k4z)*(1.0/6.0);
kax=(k1ax+2*(k2ax+k3ax)+k4ax)*(1.0/6.0);
kay=(k1ay+2*(k2ay+k3ay)+k4ay)*(1.0/6.0);
kaz=(k1az+2*(k2az+k3az)+k4az)*(1.0/6.0);
kbx=(k1bx+2*(k2bx+k3bx)+k4bx)*(1.0/6.0);
kby=(k1by+2*(k2by+k3by)+k4by)*(1.0/6.0);
kbz=(k1bz+2*(k2bz+k3bz)+k4bz)*(1.0/6.0);
kcx=(k1cx+2*(k2cx+k3cx)+k4cx)*(1.0/6.0);
kcy=(k1cy+2*(k2cy+k3cy)+k4cy)*(1.0/6.0);
kcz=(k1cz+2*(k2cz+k3cz)+k4cz)*(1.0/6.0);
```

```
krx=(k1rx+2*(k2rx+k3rx)+k4rx)*(1.0/6.0);
    kry=(k1ry+2*(k2ry+k3ry)+k4ry)*(1.0/6.0);
    krz=(k1rz+2*(k2rz+k3rz)+k4rz)*(1.0/6.0);
    kvx=(k1vx+2*(k2vx+k3vx)+k4vx)*(1.0/6.0);
    kvy=(k1vy+2*(k2vy+k3vy)+k4vy)*(1.0/6.0);
    kvz=(k1vz+2*(k2vz+k3vz)+k4vz)*(1.0/6.0);
    /*
          printf("%f %f %f %f \n",krz,frc.z,k4vz,kvz);*/
    omg.a=omg.a+kx;
    omg.b=omg.b+ky;
    omg.c=omg.c+kz;
    ea.x=ea.x+kax;
    ea.y=ea.y+kay;
    ea.z=ea.z+kaz;
    eb.x=eb.x+kbx;
    eb.y=eb.y+kby;
    eb.z=eb.z+kbz;
    ec.x=ec.x+kcx;
    ec.y=ec.y+kcy;
    ec.z=ec.z+kcz;
    rc.x=rc.x+krx;
    rc.y=rc.y+kry;
    rc.z=rc.z+krz;
    vc.x=vc.x+kvx;
    vc.y=vc.y+kvy;
    vc.z=vc.z+kvz;
    fct=1/sqrt(ea.x*ea.x+ea.y*ea.y+ea.z*ea.z);
    ea.x=fct*ea.x;ea.y=fct*ea.y;ea.z=fct*ea.z;
    fct=1/sqrt(eb.x*eb.x+eb.y*eb.y+eb.z*eb.z);
    eb.x=fct*eb.x;eb.y=fct*eb.y;eb.z=fct*eb.z;
    fct=1/sqrt(ec.x*ec.x+ec.y*ec.y+ec.z*ec.z);
    ec.x=fct*ec.x;ec.y=fct*ec.y;ec.z=fct*ec.z;
  }
    }
  if (log_res1 != NULL) fclose(log_res1);
  if (log_res2 != NULL) fclose(log_res2);
 if (log_chk1 != NULL) fclose(log_chk1);
}
int forces(Lvec *rc, Lvec *vc, Bvec *omg, Lvec *ea, Lvec *eb, Lvec *ec,
         Lvec *frc, LBvec *trq) {
/*
uses global variables : mass, g_gravity,
*/
 const double mu_friction = 0.5 ;
 const double tspeed0 = 1.0e-3 ;
 const double d_fr = 0.05; /* [cm] */
 Lvec omgL ; /* angular velocity vector in L-frame */
  Bvec tp ; /* tangent point in B-frame */
  Bvec mez ; /* unit vector parallel to the gravity */
```

```
Lvec dtp ; /* displacement from center of rotor to tangent point */
 Lvec vtp ; /* velocity of tangent point */
 Lvec frctp ; /* force operating at the tangent point */
 double htp ; /* height of tangent point */
 double fr ; /* normal reaction force */
 double ff ; /* tangential friction force */
 double tspeed ; /* tangential speed */
 double fct,t1 ;
  double mufrict ; /* friction coefficient mu */
 omgL.x = omg->a*ea->x + omg->b*eb->x + omg->c*ec->x ;
 omgL.y = omg->a*ea->y + omg->b*eb->y + omg->c*ec->y ;
 omgL.z = omg->a*ea->z + omg->b*eb->z + omg->c*ec->z ;
  /*fprintf(stderr,"omgL.z=%f\n",omgL.z);*/
 mez.a = - ea > z; mez.b = - eb > z; mez.c = - ec > z;
 normal_point(&mez, &tp);
 dtp.x = tp.a*ea->x + tp.b*eb->x + tp.c*ec->x ;
 dtp.y = tp.a*ea->y + tp.b*eb->y + tp.c*ec->y ;
 dtp.z = tp.a*ea->z + tp.b*eb->z + tp.c*ec->z ;
 vtp.x = vc->x + omgL.y * dtp.z - omgL.z * dtp.y ;
 vtp.y = vc->y + omgL.z * dtp.x - omgL.x * dtp.z ;
 vtp.z = vc->z + omgL.x * dtp.y - omgL.y * dtp.x ;
/*
 printf("%f %f %f %f %f %f %f\n",vc->x,vc->y,vc->z,vtp.x,vtp.y,vtp.z);
*/
 htp = rc -> z + dtp.z ;
 t1=htp*(1.0/d_fr); if(t1 < -5.0) t1=-5.0;
 fr = (mass*g_gravity)*exp(-t1*(1.0+0.1*t1))
       * (1- 0.1*tanh(vc->z * (1.0/15.0)));
/*
 t1=htp*(1.0/d_fr); if(t1 < -4.6) t1=-4.6;
 fr = (mass*g_gravity)*exp(-t1);
*/
/*
 printf("%f %f %f %f %f %f n",rc->z, dtp.z, htp, t1, fr); if(1) exit(1);
*/
 tspeed = sqrt(vtp.x * vtp.x + vtp.y * vtp.y);
 mufrict = mu_friction * tanh(tspeed * (1.0/tspeed0));
 ff = fr * mufrict :
 if(tspeed > 1.0e-32) fct = - ff / tspeed ; else fct = 0.0;
 frctp.x = fct* vtp.x ;
 frctp.y = fct* vtp.y ;
 frctp.z = fr ;
 frc \rightarrow x = frctp.x ;
 frc->y = frctp.y ;
 frc->z = frctp.z - mass * g_gravity ;
 trq->x = dtp.y * frctp.z - dtp.z * frctp.y ;
 trq->y = dtp.z * frctp.x - dtp.x * frctp.z ;
  trq->z = dtp.x * frctp.y - dtp.y * frctp.x ;
 trq > a = trq > x * ea > x + trq > y * ea > y + trq > z * ea > z ;
  trq->b = trq->x * eb->x + trq->y * eb->y + trq->z * eb->z ;
```

```
trq \rightarrow c = trq \rightarrow x * ec \rightarrow x + trq \rightarrow y * ec \rightarrow y + trq \rightarrow z * ec \rightarrow z ;
  /* printf("%f %f %f %f %f %f F\n",rc->z,dtp.z,htp,vc->z,fr,frc->z);*/
/*
  printf("%f %f %f %f %f %f %f %f \n",mufrict,fr,ff,frctp.x,frctp.y,frctp.z,frc->z);
  if(1) exit(1);
*/
 return 0;
}
int normal_point(Bvec *n, Bvec *tp){
/*
 For ellipsoid.
 uses global variables : Bvec R
*/
  double fct;
  tp->a=R.a*R.a*n->a; tp->b=R.b*R.b*n->b; tp->c=R.c*R.c*n->c;
 fct = 1.0/sqrt(tp \rightarrow a*n \rightarrow a + tp \rightarrow b*n \rightarrow b + tp \rightarrow c*n \rightarrow c);
  tp->a = tp->a*fct;
  tp->b = tp->b*fct;
  tp->c = tp->c*fct;
/*
  printf("%f %f %f\n",R.a,R.b,R.c);
  printf("%f %f %f\n",n->a,n->b,n->c);
  printf("%f %f %f\n",tp->a,tp->b,tp->c);
 if(1) exit(1);
*/
 return 0;
}
/*
 If call the init1 , rc and vc are necessary to establish the initial value
*/
/*
void init1(Lvec *ea, Lvec *eb, Lvec *ec, Bvec *omg0, Lvec *rc, Lvec *vc){
  double b;
  Bvec angular_velocity_ratio = {-1.0, 0.0, -0.01};
  double angular_velocity = 100*pi;
  ea->x=0.0; ea->y=0.0; ea->z=-1.0;
  eb->x=-1.0; eb->y=0.0; eb->z=0.0;
  ec->x=0.0; ec->y=1.0; ec->z=0.0;
  b=1/sqrt(angular_velocity_ratio.a*angular_velocity_ratio.a
           +angular_velocity_ratio.b*angular_velocity_ratio.b
  +angular_velocity_ratio.c*angular_velocity_ratio.c);
  omg0->a=angular_velocity*angular_velocity_ratio.a*b;
  omg0->b=angular_velocity*angular_velocity_ratio.b*b;
  omg0->c=angular_velocity*angular_velocity_ratio.c*b;
  rc->x=0; rc->y=0; rc->z=R.a;
  vc->x=0; vc->y=0; vc->z=0;
3
```

```
void init2(Lvec *ea, Lvec *eb, Lvec *ec, Bvec *omg0, Lvec *rc, Lvec *vc){
 double b;
 double theta=(89.3/90.0)*0.5*pi;
  Bvec angular_velocity_ratio = {0.0, -sin(theta), cos(theta)};
       /*relative size of body-frame components of initial angular velocity */
  Bvec n ={0.0, sin(theta), -cos(theta)};
  Bvec tp;
  double angular_velocity = 100*pi; /*size fo initial ang. vel.[radian/sec]*/
  ea->x=1.0; ea->y=0.0;
                                  ea->z=0.0;
  eb->x=0.0; eb->y=cos(theta); eb->z=-sin(theta);
  ec->x=0.0; ec->y=sin(theta); ec->z=cos(theta);
  b=1/sqrt(angular_velocity_ratio.a*angular_velocity_ratio.a
          +angular_velocity_ratio.b*angular_velocity_ratio.b
  +angular_velocity_ratio.c*angular_velocity_ratio.c);
  omg0->a=angular_velocity*angular_velocity_ratio.a*b;
  omg0->b=angular_velocity*angular_velocity_ratio.b*b;
  omg0->c=angular_velocity*angular_velocity_ratio.c*b;
 normal_point(&n, &tp);
 rc \rightarrow x=0; rc \rightarrow y=0; rc \rightarrow z=n.a*tp.a + n.b*tp.b + n.c*tp.c;
 vc->x=0; vc->y=0; vc->z=0;
fprintf(stderr,"%f,%f,%f,%f,%f\n",tp.a,tp.b,tp.c,omg0->a,omg0->b,omg0->c);
```


*/