### 卒業論文発表会 1月27日,2010,福井大学工学部物理工学科

# 原子核の半減期の経験式

物理工学科 川崎遼

### はじめに

### 研究の目的

原子核の半減期を中性子と陽子の個数(NとZ)の関数として与えるような近似式を作ることを試みる。

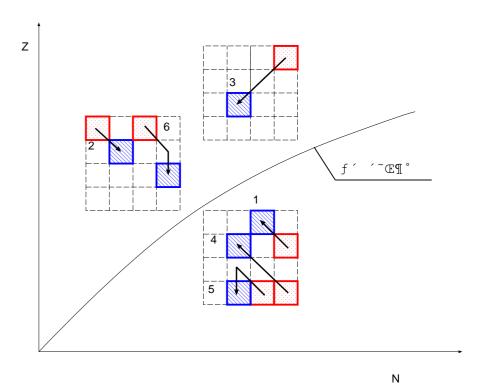
### 動機

原子核の質量(結合エネルギー)をNとZの数式として、液滴模型に基づくBethe-Weizsackerの経験式がある。

同様のことが、半減期についてもできれば、議論の出発点となる最も粗い 近似として多くの用途で役に立つであろう。

### 解析に用いるデータ

### **NUCLEAR WALLET CARDS-National Nuclear Date Center(USA)**


- 実験的に知られているすべての原子核の重要なデータ(スピンパリティ、半減期、質量など)をコンパクトにまとめたもの
- もととなる最新データファイルを本研究では解析する

## データの内容

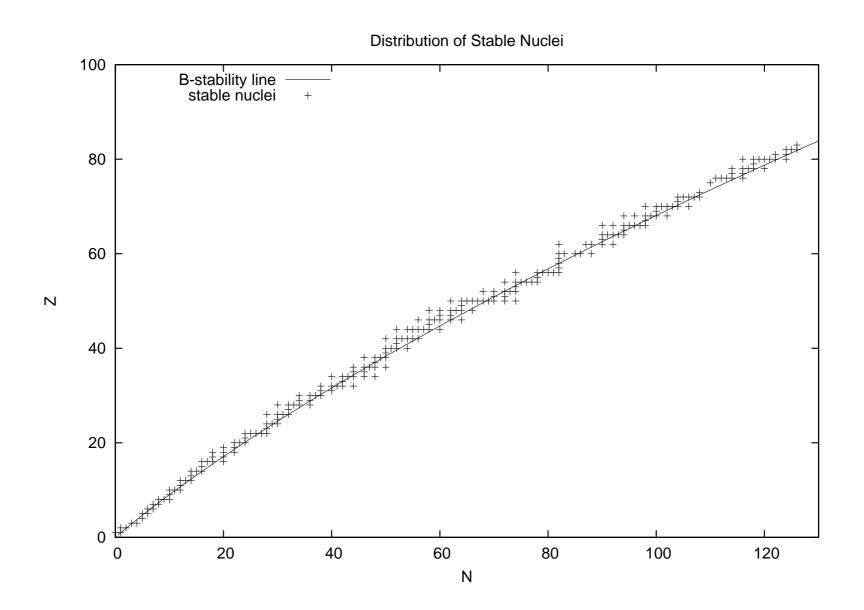
| 1  | 0 n Q  | 1/2+       | B- 100.00 | 0.0000 0.782  | 10.24 M 2   |              | 8.0713  | 0.0000   | work05 6.14E+02          |
|----|--------|------------|-----------|---------------|-------------|--------------|---------|----------|--------------------------|
| 1  | 1 H Q  | 1/2+       |           | 0.0000 0.000  | STABLE      | 99.985% 1    | 7.2890  | 0.0000   | 941006 0.00E+00          |
| 2  | 1 H Q  | 1+         |           | 0.0000 0.000  | STABLE      | 0.015% 1     | 13.1357 | 0.0000   | 200309 0.00E+00          |
| 3  | 1 H Q  | 1/2+       | B- 100.00 | 0.0000 0.019  | 12.32 Y 2   |              | 14.9498 | 0.0000   | 200007 3.89E+08          |
| 4  | 1 H Q  | 2-         | N 100.00  | 0.0000 2.910  | 4.6 MEV 9   |              | 25.9015 | 0.1033   | NUBASE 1.03E-22          |
| 5  | 1 H W  |            | N 100.00  | 0.0000 2.800  | 5.7 MEV 21  |              | 32.8924 | 0.1000   | NUBASE 8.33E-23          |
| 6  | 1 H Q  | (2-)       | N 100.00  | 0.0000 -3.000 | 1.6 MEV 4   |              | 41.8638 | 0.2649   | 200212 2.97E-22          |
| 7  | 1 H W  |            | 2N?       |               | 29E-23 Y 7  |              | 49.1350 | 1.0050 S | 03KO11 9.15E-15          |
| 3  | 2 HE Q | 1/2+       |           | 0.0000 0.000  | STABLE      | 0.000137% 3  | 14.9312 | 0.0000   | 870312 0.00E+00          |
| 4  | 2 HE Q | <b>0</b> + |           | 0.0000 0.000  | STABLE      | 99.999863% 3 | 2.4249  | 0.0000   | 199807 0.00E+00          |
| 5  | 2 HE Q | 3/2-       | A 100.00  | 0.0000 0.890  | 0.60 MEV 2  |              | 11.3862 | 0.0500   | 840808 7.91E-22          |
| 5  | 2 HE Q | 3/2-       | N 100.00  | 0.0000 0.890  | 0.60 MEV 2  |              | 11.3862 | 0.0500   | 840808 7.91E-22          |
| 6  | 2 HE Q | <b>0</b> + | B- 100.00 | 0.0000 3.508  | 806.7 MS 15 |              | 17.5951 | 0.0008   | 200212 8.07E-01          |
| 7  | 2 HE Q | (3/2)-     | N         | 0.0000 0.440  | 150 KEV 20  |              | 26.1010 | 0.0167   | 200302 3.16E-21          |
| 8  | 2 HE Q | <b>0</b> + | B- 100.00 | 0.0000 10.652 | 119.0 MS 15 |              | 31.5980 | 0.0069   | 199902 1.19E-01          |
| 8  | 2 HE Q | 0+         | BN 16.00  | 0.0000 8.619  | 119.0 MS 15 |              | 31.5980 | 0.0069   | 199902 1.19E-01          |
| 9  | 2 HE Q | (1/2-)     | N 100.00  | 0.0000 1.150  | 65 KEV 37   |              | 40.9394 | 0.0294   | 199902 7.30E-21          |
| 10 | 2 HE Q | <b>0</b> + | 2N ?      | 0.0000 1.070  | 0.17 MEV 11 |              | 48.8092 | 0.0700   | 9712 <b>0</b> 9 2.79E-21 |
| 3  | 3 LI W |            | P ?       |               | unstable    |              | 28.6670 | 2.0000 S | 0.00E+00                 |
| 4  | 3 LI Q | 2-         | P 100.00  | 0.0000 3.100  | 6.03 MEV    |              | 25.3232 | 0.2121   | 980707 7.87E-23          |
| 5  | 3 LI Q | 3/2-       | A 100.00  | 0.0000 1.970  | 1.5 MEV AP  |              | 11.6789 | 0.0500   | 840808 3.16E-22          |
| 5  | 3 LI Q | 3/2-       | P 100.00  | 0.0000 1.970  | 1.5 MEV AP  |              | 11.6789 | 0.0500   | 840808 3.16E-22          |
| 6  | 3 LI Q | 1+         |           | 0.0000 0.000  | STABLE      | 7.59% 4      | 14.0868 | 0.0000   | 200212 0.00E+00          |
| 7  | 3 LI Q | 3/2-       |           | 0.0000 0.000  | STABLE      | 92.41% 4     | 14.9081 | 0.0001   | 200302 0.00E+00          |

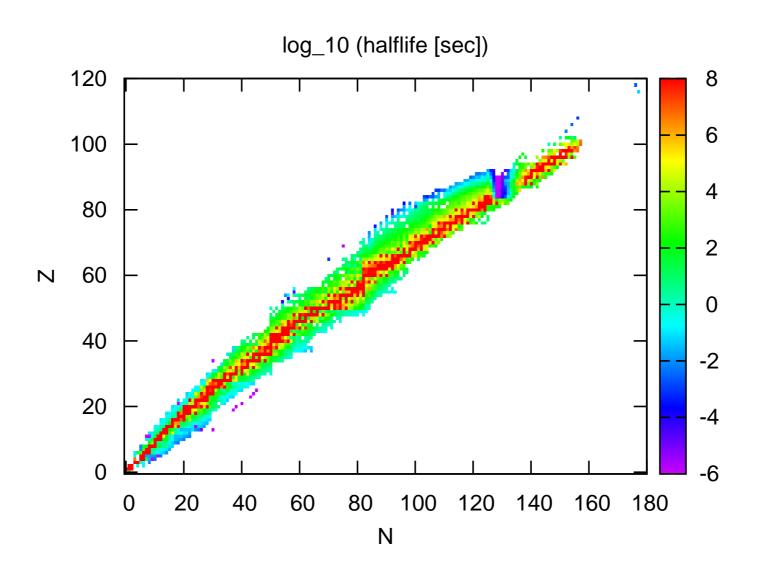
### 原子核の崩壊モード

- **1**. *β*<sup>-</sup>崩壊
- 2.  $\epsilon$ (electron capture), $\epsilon+\beta^+$ または  $\beta^+$  崩壊
- 3. 中性子放出,陽子放出, $\alpha$  崩壊
- 4. 2重 $\beta$ <sup>-</sup>崩壊,3重 $\alpha$ 崩壊,
- 5.  $\beta$ -n,  $\beta$ -p,  $\beta$ - $\alpha$ :  $\beta$ <sup>-</sup> 崩壊の後中性子放出,陽子放出, $\alpha$  崩壊
- 6.  $\epsilon$ p,  $\epsilon \alpha$ ,  $\epsilon$ SF :  $\epsilon$ または  $\beta^+$ 崩壊後 陽子放出, $\alpha$ 崩壊,SF
- 7. IT: isomeric transition(異性体転移),  $\gamma$  崩壊
- 8. SF: spontaneous fission(自発核分裂)



・図:原子核崩壊のパターン


### $\beta$ 安定曲線

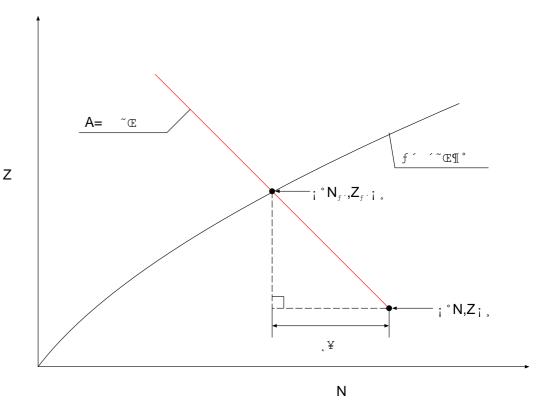

eta崩壊をしない核種の中性子数 $N_eta$ と陽子数 $Z_eta$ の組み合わせは以下の式で求めることができる

$$D = \frac{A^{\frac{5}{3}}}{A^{\frac{2}{3}} + \frac{4a_{sym}}{ac}}$$

$$A = N + Z$$
,  $D = N_{\beta} + Z_{\beta}$ 

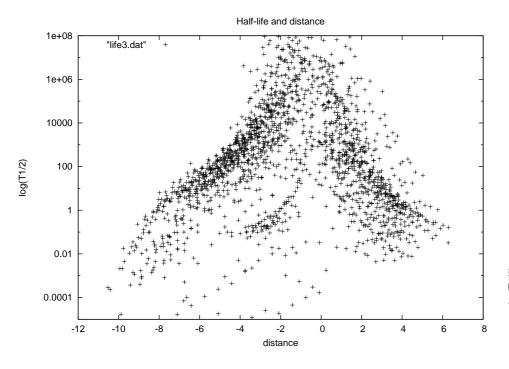
このようにして決められた $N_eta$ と $Z_eta$ を通る曲線をeta安定曲線と言う

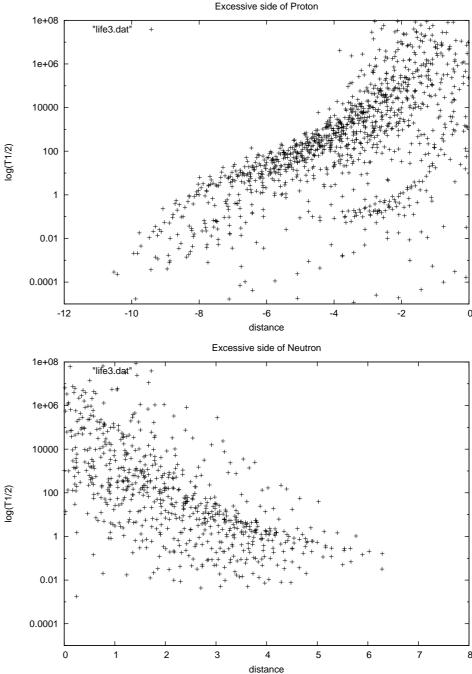


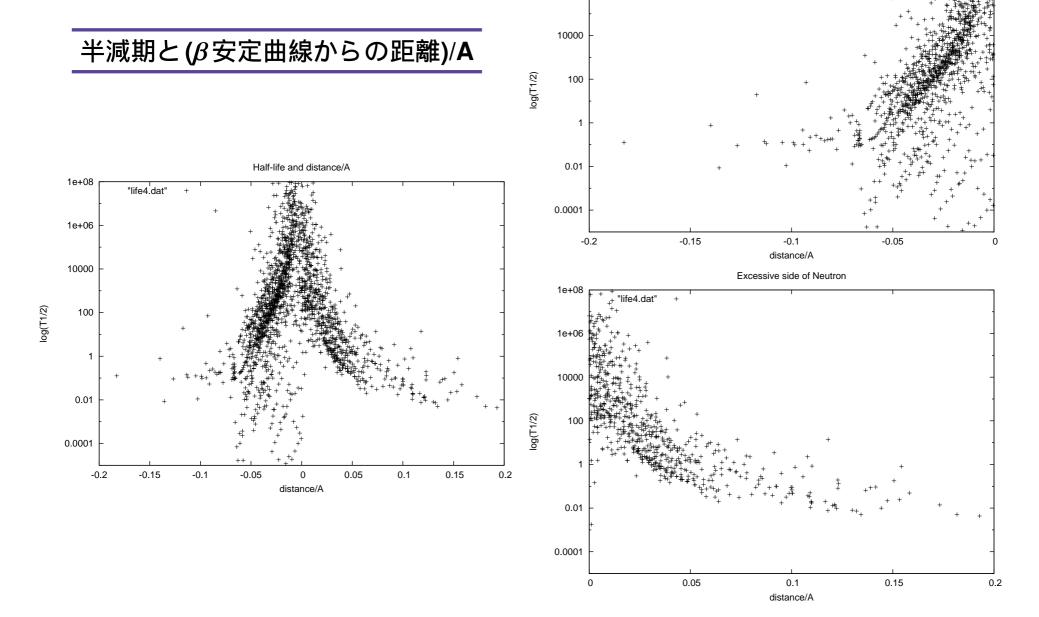



### β安定曲線からの距離

各座標をN,Zと取った場合ちょうど45度のところで、質量数の同じ核が並ぶ。


つまり $\beta$ 安定曲線上の中性子数 $N_{\beta}$ とNとの差が $\beta$ 安定曲線からの距離となる。


eta安定曲線からの距離 = N- $N_{eta}$ 




・図:β安定曲線からの距離

### 半減期とeta安定曲線からの距離







1e+08

1e+06

"life4.dat"

Excessive side of Proton

### まとめ

- 1. 原子核の質量と半減期の評価値を NUCLEAR WALLET CARDS のデータファイル を入手し、これを解釈して読み込む perl スクリプトを作成した。
- 2. 半減期を N,Z 平面上に図示し、その傾向を論じた。
  - β安定線からの距離への依存性の質量数による違い
  - α崩壊とβ崩壊を別個に扱う必要性
- 3. 半減期を $\beta$ 安定線からの距離の関数としてプロットするより距離/質量数の関数としてプロットする方がデータのばらつきを減らすことができる。

### 卒業論文締切りまでの目標

1. 横軸を(eta安定線からの距離)/ $A^{lpha}$ としたとき、フィッティングを最も良くするlphaの値の決定

- 2.  $\alpha$ の値に理論的根拠を与える
  - 液滴模型の N-Z 依存項に結びつけたい

3. 最小2乗法の結果として半減期の最良の経験式を決める