

エネルギー準位	1 s	2s	2p	3s	3р	3d	4s	4p	4d	4f	5s	5р	5d
1H	1												
2He	2												
3Li	2	1											
4Be	2	2											
5B	2	2	1										
6 C	2	2	2										
7N	2	2	3										
80	2	2	4										
9F	2	2	5										
10Ne	2	2	6										
11Na	2	2	6	1									
12Mg	2	2	6	2									
13AI	2	2	6	2	1								
14Si	2	2	6	2	2								
15P	2	2	6	2	3								
16S	2	2	6	2	4								
17CI	2	2	6	2	5								

エネルギー準位	1 s	2s	2p	3s	3р	3d	4s	4p	4d	4f	5 5	5р	5d
18Ar	2	2	6	2	6								
19K	2	2	6	2	6		1						
20Ca	2	2	6	2	6		2						
21Sc	2	2	6	2	6	1	2						
22Ti	2	2	6	2	6	2	2						
23V	2	2	6	2	6	3	2						
24Cr	2	2	6	2	6	5	1						
25Mn	2	2	6	2	6	5	2						
26Fe	2	2	6	2	6	6	2						
27Co	2	2	6	2	6	7	2						
28Ni	2	2	6	2	6	8	2						
29Cu	2	2	6	2	6	10	1						
30Zn	2	2	6	2	6	10	2						
31Ga	2	2	6	2	6	10	2	1					
32Ge	2	2	6	2	6	10	2	2					
33As	2	2	6	2	6	10	2	3					
34Se	2	2	6	2	6	10	2	4					
35Br	2	2	6	2	6	10	2	5					
36Kr	2	2	6	2	6	10	2	6					
37Rb	2	2	6	2	6	10	2	6			1		

同じ殻に属する副殻のエネルギーのイメージ図

主量子数n=3の場合

水素様原子の場合は3s,3p,3dのエネルギー は同じですが、角運動量によって軌道は変 わってくる。3d軌道は、円軌道になってい るため、多電子原子の場合、内側の電子に よる遮蔽によってクーロンエネルギーの影 響を受けにくく、エネルギーが高い。3s軌 道は、内側まで入り込みクーロンエネルギー の影響を受けやすいので、エネルギーが低く なる。このため3s,3p,3dの順にエネルギー が高くなります。

3d

イオン化エネルギー

多電子系のハミルトニアン(非相対論)

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \vec{\nabla}_i^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i} \right] + \sum_{i
$$r_{ij} = |\vec{r}_i - \vec{r}_j|$$$$

Schrödinger 方程式

$$H\Phi(\vec{\tau}_1,\vec{\tau}_2\ldots,\vec{\tau}_N)=E\Phi(\vec{\tau}_1,\vec{\tau}_2\ldots,\vec{\tau}_N)$$

$$\Phi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(\vec{\tau}_1) & \cdots & \phi_N(\vec{\tau}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\vec{\tau}_N) & \cdots & \phi_N(\vec{\tau}_N) \end{vmatrix}$$

*τ*は、スピンと空間、両方の座標を含んだ変数。

スレーター行列式は、反対称性を備えており、パウリの原理も満たしている。

N電子系の波動関数を、スレーター行列式に限定して、変分問題を 解く。 • Hartree-Fock 方程式の正準形 (N 電子系)

$$\begin{split} \left[-\frac{\hbar^2}{2m} \vec{\nabla}^2 - \frac{Ze^2}{4\pi\epsilon_0 r} + \sum_{j=1}^N \int \frac{e^2}{4\pi\epsilon_0 |\vec{r} - \vec{r'}|} |\phi_j(\tau')|^2 d\tau' \right] \phi_i(\tau) \\ - \sum_{j=1}^N \left[\int \frac{e^2}{4\pi\epsilon_0 |\vec{r} - \vec{r'}|} \phi_j^*(\tau') \phi_i(\tau') d\tau' \right] \phi_j(\tau) = \varepsilon_i \phi_i(\tau) \end{split}$$

• $i = 1, 2, 3 \dots, N$

- $\phi(\tau)$ は、規格化されたスピン軌道関数。
- *j*についての和は、占有されているスピン軌道についての和。

交換項の局所近似(Slater 近似)

• 電子が互いに避け合いクーロン斥力の影響を受けににくくなるので、エネルギーが低くなる。そのため、マイナスの符号が付いている。

非局所ポテンシャル

$$-\sum_{j=1}^{N} \left[\int \frac{e^2}{4\pi\epsilon_0 |\vec{r} - \vec{r''}|} \phi_j^*(\tau') \phi_i(\tau') d\tau' \right] \phi_j(\tau)$$

 $\|$

局所ポテンシャル

$$-\frac{e^2}{4\pi\epsilon_0} \left[\frac{3}{\pi}\rho(\tau)\right]^{\frac{1}{3}} \phi_i(\tau)$$

hoは、電子密度で、中心のポテンシャルエネルギーは、一様密度の電荷分布の場合、 $ho^{1/3}$ に比例する。

$$\rho(\tau) = \sum_{j} \phi_{j}^{*}(\tau) \phi_{j}(\tau)$$

Dirac-Fock法による計算

 これまでは、説明を非相対論で進めてきたが、実際に行った計算は、相対論の効果を取り入れた Dirac-Fock 法で行った。Schrödinger 方程式を Dirac 方程式に置き 換えることで、相対論の効果を取り入れた。

エネルギー準位	1s 1/2	2s 1/2	2p 1/2	2p 3/2	3s 1/2	3p 1/2	3p 3/2	3d 3/2
1H	1							
2He	2							
3Li	2	1						
4Be	2	2						
5B	2	2	1					
6C	2	2	2					
7N	2	2	2	1				
80	2	2	2	2				
9F	2	2	2	3				
10Ne	2	2	2	4				
11Na	2	2	2	4	1			
12Mg	2	2	2	4	2			
13AI	2	2	2	4	2	1		
14Si	2	2	2	4	2	2		
15P	2	2	2	4	2	2	1	
16S	2	2	2	4	2	2	2	
17CI	2	2	2	4	2	2	3	

エネルギー準位	3p 3/2	3d 3/2	3d 5/2	4s 1/2	4p 1/2	4p 3/2	4d 3/2
18Ar	4						
19K	4			1			
20Ca	4			2			
21Sc	4	1		2			
22Ti	4	2		2			
23V	4	3		2			
24Cr	4	4	1	1			
25Mn	4	4	1	2			
26Fe	4	4	2	2			
27Co	4	4	3	2			
28Ni	4	4	4	2			
29Cu	4	4	6	1			
30Zn	4	4	6	2			
31Ga	4	4	6	2	1		
32Ge	4	4	6	2	2		
33As	4	4	6	2	3		
34Se	4	4	6	2	4		
35Br	4	4	6	2	5		
36Kr	4	4	6	2	6		

Dirac-Fock法による計算結果

- 中性原子のエネルギー準位と電子配置
- Cr(24)

経験的に知られた基底状態 $(3p)^{6}(3d)^{5}(4s)^{1}$ のときのエネルギー

 $E = -2.888050861873 \times 10^{-2} [MeV]$

励起した状態 $(3p)^6 (3d)^4 (4s)^2$ のときのエネルギー

 $E' = -2.887954172999 \times 10^{-2}$ [MeV]

$$E - E' = -9.6688874 \times 10^{-7} [MeV]$$

= -0.97[eV]

実験的に知られている基底状態の方が、低いエネルギー状態で安定しているという ことを、計算から確認することができた。 計算によるイオン化エネルギー

- Dirac-Fock法で、原子の基底状態の電子配位とイオン化エネルギーを計算した。
- 実験的な配位とすべて一致した。
- イオン化エネルギーも実験値をおおむねよく再現したが、一部再現できない挙動も
 見られた。これは、電子相関によると考えられる。