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Chapter 1

Introduction

As for the description of the degree of freedom of axially asymmetric deformation in

the nucleus (the γ degree of freedom), there are two extreme models having apparently

different features. One is the γ-vibrational model of Bohr and Mottelson [1], in which a

nucleus vibrates around an axially symmetric shape. The other is the triaxial rotor model

given by Davydov and Filippov [2], in which a nucleus has a static axially asymmetric

deformation and rotates around all three principal axes of the deformation. In the former

model γ is considered as a dynamical variable, while in the latter model it is treated as

a parameter to specify a nuclear shape. There have been a wide variety of arguments

concerning the two models for thirty years. A brief review is presented in chapter 2.

The two models give roughly similar results for most of the observables (like some en-

ergy levels and collective transitions) despite the obvious distinction in their formulations

[3]. It seems due to the fact that these observables are determined by some average value

of γ and scarcely dependent on the size of the fluctuation in γ : The triaxial rotor model

can be obtained by neglecting the fluctuation in γ and fixing γ at the average value.

It is interesting to find quantities which bring about the information not only on

the average value of γ but also on the fluctuation in γ. An existing method to see

the fluctuation in γ is a systematic determination of the quadrupole matrix elements in

Coulomb excitation experiments [4] [5] . In this paper we present a new example of such

quantity, i. e. the degree of violation of the K-selection rule in K-isomerism, which is

found very sensitive to the size of the fluctuation in γ. As a result, we can distinguish

the two extreme models of axial asymmetry very clearly. In this paper, we investigate
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the effects of the fluctuation in γ by changing the shape of the potential energy for γ-

deformation and show that the potential shape can be known to some extent from the

half-lives of K-isomers.

In electromagnetic transitions between states having definite K-quantum numbers1,

not only the change in the total angular momentum but also the change in theK-quantum

number cannot exceed the multipolarity of the radiation (the K-selection rule). The K-

quantum number is conserved fairly well in well-deformed nuclei with axial symmetry.

Hence states which have large expectation values of the K-quantum number are likely to

become long-lived isomers when they can decay only into states with small expectation

values of K. More detailed explanations are given in chapter 3.

Experimentally, very roughly speaking, the probabilities of K-forbidden transitions

are hindered by a factor of 102 for each one increment of the K-quantum number [6] [7]

[8]. An extreme example of K-isomer is a K = 16 state in 178Hf, which has a half-life as

long as 31 years [9] [10].

But recently some high-K isomers in neutron deficient Os isotopes are observed decay-

ing with much shorter half-lives than those predicted by the above-mentioned empirical

rule [11] [12] [13]. The most remarkable one is a Kπ = 25+ isomer in 182Os, which decays

(in part) directly into the I=24 member of the s-band [13] [14] quickly in spite of the

difference of the K-quantum number of ∼ 20 (see the footnote 2 ). The configuration of

the isomer is speculated to be of six-quasi particle state [13] [15].

In this thesis we study the Kπ = 10+ isomers in 182W and 184Os which have a very

simple configuration, i. e. a two-quasi-particle (ν[624]9/2+, ν[615]11/2+) state involving

only a unique-parity (intruder) orbital (νi13/2,ν means neutrons). (Mixing ratio of other

configuration (π[514]9/2−, π[505]11/2−) might be large in the case of 184Os from the

g-factor measurement [13] but we assume only the above-mentioned configuration for

both nuclei in this paper.) Illustrating this simple configuration, we can concentrate

our attention on the study of the γ-degree of freedom, since we need not worry about

1The K-quantum number is defined as the component of the total angular momentum along the third
principal axis of nuclear shape. This axis is conventionally the symmetry axis in prolate shape.

2The expectation value of K is not ∼ 0 in the s-band states, because K is rather widely spread for
rotationally aligned orbitals.
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ambiguities concerning the complicated microscopic structure.

The Kπ = 10+ isomer observed in 184Os [13] decays into the I = 8 ( 8+gr ) and the

I = 10 ( 10+gr ) members of the ground band with a partial half-life of 180 ns and 360 ns

respectively 3. The partial half-life with these two transitions is 120 ns 4. In an isotone

182W of N=108 having Z smaller by 2, the isomer which is considered to have the same

configuration decays with a half-life of 1.4 µs into the 8+gr state and the 10+gr state [16].

The half-life is about 12 times as long as the partial half-life of the isomer in 184Os with

these two transitions, although the transition energies are very similar in both nuclei:

In 182W (184Os ) the energy of the γ-ray of the transition from the isomer to the 10+gr

state is 0.519 MeV (0.495 MeV) and that to the 8+gr state is 1.087 MeV (1.092 MeV).

It should be noted that even the isomer in 182W has a much shorter half-life than the

half-life predicted by the above-mentioned empirical rule. The decay properties of the

two isomers are summarized in fig. 3.2.

Chowdhury and his co-workers suggested that the difference in the half-lives can be

attributed to the difference of the softness with respect to γ-deformation (γ-softness),

because γ-deformation mixes the K-quantum number and the K-selection rule breaks

down. Nuclides like 182W and 184Os are classified into transitional nuclei, which are located

between the well-deformed rotational nuclei and the spherical vibrational nuclei on the

chart of the nuclides. They are less deformed and more γ-soft than typical rotational

nuclei in the rare earth region. The degree of γ-softness can be estimated from the ratio

of the excitation energy of the I = 2 state of the γ-band ( γ-bandhead or 2+γ ) to that of

the I = 2 state of the ground band ( 2+gr ). The ratio is 12.2 in 182W while it is 7.87 in

184Os (fig. 3.1). Therefore it is quite natural to consider that the nucleus 184Os is more

γ-soft than the nucleus 182W.

These clear violations of the K-selection rule seem so strange that they are expected

to inform us new aspects of nuclei concerning the γ-degree of freedom. Some explanations

for these fast K-isomeric decays are presented, in which the γ-degree of freedom plays

3The former partial half-life is explicitly given in ref. [13]. The latter one is estimated from the
intensities of γ-rays given in ref. [13].

4The total half-life of the isomer is 20 ns. It decays with a large portion into an I = 9 state whose
configuration is not identified.
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the leading role. At first, in the papers [11] [12] reporting the observation of the Kπ =

25+ isomer in 182Os, Pedersen and his collaborators suggested the coexistence of axially

symmetric shape (for the ground-band states and the isomer) and triaxial shape (for

the s-band states). They speculated that the polarizing effect of the rotation-aligned

particles may triaxialize the nuclear shape if the nucleus is very γ-soft. If it is so, many

triaxial-rotation levels having various expectation values of the K-quantum number are

created just above the s-band. Passing through these states as stepping stones, the high-K

isomer can be de-excited quickly by repeating transitions with small ∆K. The observed

complicated decay pattern of the isomer is consistent with this picture: The isomer decays

by the emission of as many as 100-150 γ-rays [17] and the s-band states are populated in a

scattered manner. If such three-dimension rotational levels of a triaxial nucleus are really

observed, a great impact will be made especially on the theories of nuclear collective

motions [18]. But no such triaxial-rotation levels are found on the decay paths in the

subsequent detailed experiment [13].

Onishi and the author studied the Kπ = 25+ isomer from a different point of view

[14]. We assumed that the isomer had an angular-momentum-aligned configuration of two

protons and two neutrons in the intruder orbitals 5 , with emphasis on the importance of

the interaction between a proton and a neutron. Using a model in which h11/2 protons

and i13/2 neutrons are coupled to a (γ-soft) rotor, we calculated the de-excitation paths

of the isomer and found that these paths go through many excited two-particle-rotation-

aligned bands before reaching the s-band states. This work pointed out the possibility of

observing excited rotation-aligned bands by utilizing the delayed decay of isomers lying

much higher than the yrast level, although the configuration did not turn out to be the

assumed one [13] [15].

Chowdhury and his coworkers presented a new picture to explain the fast decays of

the K-isomers in the next paper [13], in which the detailed decay paths of the Kπ = 25+

isomer in 182Os and the finding of the Kπ = 10+ isomer in 184Os are reported. If the

nuclear shape is very soft toward γ-deformation, large quantum fluctuation in γ can mix

5When we published the work, the spin of the isomer was not assigned yet and was speculated to be
(20± 2)h̄ in refs. [11] [12].
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the K-isomeric state and the s-band (or the ground-band) state via barrier penetration

through the oblate shape in spite of the large difference in their structures: The angular

momentum is aligned with the symmetry axis in the K-isomer, while it is perpendicular

to the symmetry axis in the s-band (or the ground-band) state, though equilibrium shapes

of the two states are the same ( γ=0◦ ). Calculation of barrier heights and penetration

factors (in the framework of the cranking model) are proposed for the future work in the

paper. T. Bengtsson is attempting to make such calculations [15].

It is uncertain, however, whether the above simplified picture can be applied to real

nuclei. As for the quantitative estimation of penetration factors, it is much more uncertain.

Since the size of deformation is not large (β ∼ 0.2) in transitional nuclei, the assumption

of adiabaticity for the intrinsic motions does not seem to be a good approximation. The

motions of particles may be disturbed considerably by the quantum fluctuation in the

rotational motion and the shape deformation. In order to settle the problems of these

ambiguous points in the semiclassical picture, three kinds of motions — the rotation, the

shape deformation, and the intrinsic particle motions — should be treated on an equal

footing in a quantum mechanical way. Only in that case, we can be sure that quantitative

estimations are made.

In this paper we are going to make this fully quantum mechanical calculation in order

to examine how the half-lives are altered by introducing the γ-degree of freedom, with

other effects taken into account quantitatively as well. It is expected that we can obtain

new information about the axial asymmetry — such as the size of the fluctuation in γ —

from decays of K-isomers.

As for the framework of the calculation, we use the particle-rotor model rather than

the cranking model. The former is a fully quantal model and conserves the angular

momentum, while the latter is a semiclassical model in which states are not eigenvectors

of angular momentum. The latter model is not suitable for our purpose because it suffers

from spurious mixing of states having different angular momentum and also because it

cannot take into account the effect of the fluctuation of the rotation axis. A unique point

of our approach is that we describe the particle-rotor model in the laboratory frame using

spherical bases for the particles, not in the intrinsic frame of the nuclear shape using the
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Nilsson bases. This formulation of the particle-rotor model is quite suitable for treating

the large-amplitude motion in the nuclear shape, i. e. for treating the oblate shape as well

as the prolate shape in a single model space.

Now let us mention the contents of the following parts of this paper. In chapter 2 the

similarity and the difference between the γ-vibrational model and the triaxial rotor model

are reviewed and discussed. In chapter 3 the general empirical facts concerning K-isomers

are reviewed. In chapter 4 the framework of our calculations are given. The formulation of

the quantal liquid-drop model of Bohr [1] is reviewed. We employ the model so as to treat

the collective motions. Next, the particle-rotor model is re-formulated in the laboratory

frame in a somewhat original way. The relation of the model to the strong-coupling

particle-rotor model is also discussed.

In chapter 5 the procedures of numerical calculations are explained in detail. We have

to use accurate wave functions in order to calculate decay amplitudes of isomers, in which

small components of wave functions can have large effects. Thus we take the utmost care

in order to obtain the accurate wave functions of the eigenstates of our model hamiltonian.

For example, full (νi13/2)
n (n=0,2,4,· · ·,14) configurations are taken into account for the

particle space. Moreover, special cares are taken for the truncation of the highly-excited

γ-vibrational states. It is confirmed that this truncation has no influence on the quantities

concerning the decay of the K-isomers.

In chapter 6 the results of numerical calculations are presented and are discussed. We

summarize this paper in chapter 7.
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Chapter 2

Treatment of the γ-degree of freedom

2.1 Similarity of the γ-vibrational model and the rigid

triaxial rotor model

According to microscopic calculations, equilibrium shapes of well-deformed nuclei are

axially symmetric and prolate (γ=0◦). For instance, Baranger and Kumar applied the

pairing-plus-quadrupole model to even-even nuclei with N=82-126, Z=50-82 and found

that the equilibrium shapes are spherical or axially symmetric prolate except for Z=76-80

(Os, Pt, Hg) [19]. In the region of Z=76-80, where the deformation disappears gradually

as Z and/or N increase, some nuclides are predicted to have axially asymmetric (in other

word, triaxial) or oblate equilibrium shapes. The nuclei treated in this paper — 182W

and 184Os — are predicted to have axially symmetric prolate equilibrium shapes.

A basic model was proposed by A. Bohr to treat the quadrupole surface-vibrations

and rotations (the Bohr model) [1]. In this paper we treat collective motions of the

nucleus only in the framework of the Bohr model for simplicity, though there is another

successful model for nuclear collective motions, i. e. the interacting boson model of Arima

and Iachello [20]. In the work [1], Bohr and Mottelson supposed that the γ-degree of

freedom, which expresses the deviation from the axially symmetric shape, manifests itself

as the vibration of nuclear shape around axially symmetric shape. It is widely accepted

that this γ-vibration is associated with the γ-band, i. e. the rather low-lying Kπ = 2+

band which occurs in most deformed even-even nuclei and which has large E2 matrix

elements for its excitation.

Several years later, however, Davydov and Filippov introduced an alternative model
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which also includes a motion associated with the γ-degree of freedom [2]. It was the

triaxial rotor model, in which the nucleus is assumed to have a rigid 1 axially asymmetric

shape. The triaxial nucleus can rotate around the 3-axis (the third principal axis of

the nuclear quadrupole deformation), while the axially symmetric nucleus can not rotate

around the axis because it is symmetric around the axis. The γ-band is associated with

the excitation of rotation around the 3-axis in this model. Many experimental data like

energy levels and transition amplitudes in the ground and the γ-band of even-even nuclei

are explained rather well in the framework of this model. The model was extended in

order to take into account the β-vibration (the nucleus is still stiff in the direction of γ )

and the β-band was reproduced successfully [21].

Considering the shallowness of microscopically calculated energy surfaces for γ-deformation,

it seems that the nucleus can not have such stable rigid triaxial shape. According to Bohr’s

model, the amplitude of zero-point motion in the variable γ is as large as the size of static

γ-deformation assumed in Davydov’s calculation. Bohr expressed sharp criticism to the

triaxial rotor model: The rigid triaxial deformation does not hold in the real nucleus since

the concept of deformation can be applied only if the average value is greater than the

fluctuation [22]. Moreover it was pointed out by many authors that many features repro-

duced by the triaxial rotor model are also accounted for equivalently by the conventional

γ-vibrational model [23] [24] [25].

At first sight, it is rather strange that the predictions of the two models are so similar

in spite of the difference in their pictures. In the γ-vibrational model, the variable γ

fluctuates around γ=0◦, while in the triaxial rotor model, γ is fixed at a constant value

γ0 where γ0 > 0◦.

We can demonstrate the origin of this similarity through the examination of the matrix

elements of functions of γ in the subspace of low excitations as for the γ-degree of freedom.

This point of view was mentioned by Preston in the Kingston Conference [22], and an

explicit explanation was given by Yamazaki [26]. When |γ| ≪ 1 in the γ-vibrational model

with a harmonic potential, we can restrict the motion in γ to the ground state with K=0

1The word “rigid” means that the shape of the surface is stiff against deformations, not that the
nucleus is regarded as a rigid body.

10



(|K=01⟩ 2 ) and the first excited state with K=2 (|K=21⟩) to a good approximation.

For |γ| ≪ 1, γ can be regarded as the radial variable for a two-dimensional motion of a

particle, where the azimuthal angle is expressed by 2θ3, where θ3 is one of the Euler angles

representing the rotation around the 3-axis [1]. When we consider terms up to O(γ2),

there are only three non-vanishing matrix elements on account of this interplay between

γ and the rotation around the 3-axis,

⟨K = 01| γ |K = 21⟩ = γ00, (2.1)

⟨K = 01|γ2|K = 01⟩ = γ200, (2.2)

⟨K = 21|γ2|K = 21⟩ = 2γ200, (2.3)

where γ00 is the amplitude of zero-point motion in the variable γ in the ground state.

Therefore we can replace the dynamical variable γ by a static parameter γ00 to an accuracy

of O(γ). Through this replacement, the γ-vibrational model is reduced into the triaxial

rotor model with γ0=γ00. Although the excitation energy of γ-vibration is twice as large

as the energy of rotation around the 3-axis in rigid triaxial rotor model with γ0=γ00, it

can be said that gross features of the similarity are accounted for by this argument. Hence

we do not have to conclude the rigidity of triaxial shape even if the triaxial rotor model

can reproduce many features of the states with zero or one γ-vibrational phonon.

The rigid triaxiality is revived by Meyer-ter-Vehn [27]. He applied the triaxial-rotor-

plus-particle model to some transitional odd-A nuclei (A=135,190). As a result, he found

that the experimental energy spectrum of the odd-A nuclei are reproduced fairy well by

this model. To his surprise, the value of static γ-deformation (γ0) can be determined

within ±2◦ to reproduce the energy spectra of an odd-A nucleus and the adjacent even

nuclei. Considering the strong γ-driving effects of the last odd particle, the core seems

to have much deeper potential well around γ0 than the soft potentials predicted by mi-

croscopic calculations [19]. He suggested the existence of rigid triaxial shape for these

transitional nuclei. Toki and Faessler drew the same conclusion using an improved model

with a variable moment of inertia [28].

Against Meyer-ter-Vehn’s suggestion, Yamazaki and his collaborators argued that the

2The subscript 1 means that the state is the lowest one having the quantum number K=0.
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coupling of the particle motion to the γ-degree of freedom is also equivalent between

the two models as far as |γ| is small [29]. The coupling is expressed by a quadrupole-

quadrupole interaction and the quadrupole matrix elements are already shown to be

equivalent. Now it is commonly believed that the odd particle is not a probe sensitive

enough to identify triaxial deformation [30] [31], at least for weakly deformed nuclei.

As for the microscopic calculation of the potential energy surface for deformation,

Hayashi and his collaborators discussed the effects of three-dimensional angular momen-

tum projection on the Hartree-Fock-Bogoliubov ground states [32]. Angular momentum

projection has large effects in the case of weak symmetry violation like in the case of

γ-deformation of transitional nuclei. They calculated the microscopic potentials and ob-

tained the wave functions in the β-γ plane for such potentials. They found for 188Os that

,while the unprojected wave function is γ-unstable, the projected wave function rather

localizes in the region 20◦ < γ < 40◦. But the value of the wave function at γ = 0◦ is still

half as large as the value at the peak (γ ∼ 30◦). Hence we cannot say that the triaxial

deformation is realized in 188Os.

In the real nucleus, which is composed of finite number of nucleons, the concept of the

shape of the surface is more or less ambiguous. Recently Otsuka and Sugita pointed out

in terms of the interacting boson model (IBM) that the extreme limits of the two models

— the γ-unstable model (i. e. the O(6) limit of IBM) and the rigid triaxial model with

γ=30◦(a coherent state of γ=30◦ deformed boson with angular momentum projection) —

have equivalent low-lying states when the number of bosons is small enough [33]. This

result is interpreted that when the number of degrees of freedom is small enough, they

are exhausted in order to define the principal-axis frame of the shape and more specific

determination of the shape — like determination of the value of γ — is impossible on

account of the lack of available degrees of freedom.

2.2 Difference of the two models in energy levels

As we have just seen in the last section, the similarity of the two models originates in the

fact that we look at only γ00 ( the root mean square value of γ in the ground-band states).

Therefore if we have a quantity that can distinguish the two models, we can obtain more
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information on the motion in γ than γ00.

Although the two descriptions of the triaxiality resemble each other at low-lying states,

higher excited states can be utilized to distinguish the two models. For example, the

energy splitting of the doublet of the double-γ-vibrational states ( K=02 and K=41 )

can be used to investigate the shape of the potential for γ-deformation [34] [35]. If the

potential is harmonic around γ=0◦, the two double-γ-vibrational states are degenerate.

As the potential minimum is shifted from zero to positive values of γ, the K=41 level

goes downward while the K=02 level goes upward. In the limit of rigid triaxial rotor, the

K=02 level disappears completely. The K=02 double-γ-vibrational state has not been

found yet.

From a different viewpoint, the situation can be expressed that the energy ratio of

the K=41 state to the K=21 state is 2 in the case of harmonic potential, but it is 4 in

the case of the rigid triaxial rotor. For example, Yamazaki and his coworkers pointed out

that the energy of the K=j+4 band in Ir isotopes, in which the odd particle with spin

j (=Ω=11/2) is confirmed to be coupled to the K=41 double γ-vibrational state, is too

low to be consistent with the prediction of the triaxial-rotor-plus-particle model [29].

The spectrum of the (K=21) γ-band can be also utilized in order to distinguish the

two models, though the physical meaning of the phenomena is less transparent than in

the case of the double-γ-vibrational states. In the γ-vibrational model, the spectrum

show a (3+,4+), (5+,6+), · · · bunching pattern, which is opposite to the (4+,5+), (6+,7+),

· · · clustering pattern predicted in the triaxial rotor model [36] [37]. In the transitional

nuclei, the spectrum clearly shows the former bunching pattern and these nuclei seem

rather γ-vibrational than rigid triaxial.

It is, however, worth while noting that energy levels of these highly excited states

can be shifted easily because the states tend to couple with quasi-particle excitations.

Hence more direct investigation of the wave functions are desirable in order to distinguish

between the γ-vibration and the rotation of rigid triaxial nucleus.

13



2.3 Direct investigation of wave functions

Now let us consider how we can investigate the shape of the wave function for γ in more

direct manners. Though there are many detailed investigations of the transition matrix

elements, we do not describe them here. In stead, we give more intuitive considerations.

In the part (a) of figure 2.1 we show the schematic shape of wave functions for γ-vibration

around γ=0◦ and for stiff triaxial deformation. Two regions of γ are missing in the latter

wave function, i. e. the region A (γ < γ0) and the region B (γ > γ0). The crucial point

to decide if the deformation is triaxial or not is whether the wave function is vanishing or

not in the region A.

The information on the wave function for γ is not included in M1 transition ampli-

tudes, because M1 operator is only the total angular momentum operator multiplied by

a constant factor and does not concern to the intrinsic shape.

By E2 transitions, we can only obtain some mean deviation in γ from γ=0◦ and can not

investigate the more detailed shape of wave functions, because the E2 operator depends

on γ only through cos γ and sin γ,

M(E2, µ) =
3ZeR2

0

4π
α2µ (2.4)

=
3ZeR2

0

4π
β

{
cos γ D2

µ0 + sin γ
D2

µ2 +D2
µ−2√

2

}
. (2.5)

Details of the above equations are explained in chapter 4 . As is illustrated in the part

(b) of figure 2.1, the E2 operator changes much slowly compared to the wave functions

for γ.

Therefore, to learn the shape of wave functions in detail, we must use operators whose

variation in the interval 0 ≤ γ ≤ γ0 is very large. Cline and his collaborators developed

a computer code to analyze complicated data of Coulomb excitation experiment [4] [5].

Using this code, they can derive the matrix elements of not only cos γ and sin γ but also

more complicated functions of γ like cos 3γ and cos23γ from experiments . These functions

are sketched in the part (c) of figure 2.1. Thus the shape of wave functions for γ can

be known to some extent by this method. It is, however, worth while noting that when

we make inner products of these wave functions, we have to include the volume element
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| sin 3γ| (sketched in the part (d) of figure 2.1 ), which diminishes the contribution from

the regions near γ=0◦ and γ=60◦. Hence it is rather difficult to examine the shape of the

wave function in the region A.

For another example, some particle transfer reactions may be employed to investigate

the shape of wave functions [38]. Cross sections of particle transfer are sensitive to single

particle levels near the Fermi level, while these single particle levels are changed largely

by the nuclear shape. Reactions which depend on γ very sensitively can teach us the

distribution in γ if deformation β is so large that particles are very adiabatically coupled

to the nuclear shape.

In this paper we show that K-isomeric decays can be used as very sensitive probes

in order to obtain information about the wave functions in the region B (γ > γ0), and

we investigate the mechanism associating the fluctuation in γ into γ > γ0 with the K-

isomeric decays. In the next chapter, we discuss about the K-isomerism and the recent

experiments in which flagrant violations of the K-selection rule are observed.
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Figure 2.1: Schematic pictures of the wave functions for γ in the γ-vibrational model and
the triaxial rotor model. Some functions of γ are also shown.
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Chapter 3

The K-selection rule and K-isomers

3.1 The K-selection rule and its violation

In axially symmetrically well-deformed nuclei the component of the total angular momen-

tum along the symmetry axis (K) is conserved fairly well. Therefore, in such nuclei, a

state can be separated to a good approximation into the rotational part for the orientation

angles (Ω) and other intrinsic-motion part

|IMKα⟩ = |IMK(Ω)⟩ ⊗ |Kα⟩ , (3.1)

where I,M , and K are the quantum numbers for rotation, while other necessary quantum

numbers are expressed by α. If the nuclear shape is invariant with respect to π-rotation

around an axis perpendicular to the symmetry axis, the state should be a linear combina-

tion of two states having K and −K in order to fulfill the single-valuedness of the wave

function with respect to nuclear deformation seen in the laboratory frame. Even if this is

applied to eq. (3.1), the following discussion about the K-selection rule is not altered.

The moments associated with electromagnetic multipole quanta can be expressed using

the moments referring to the intrinsic frame of the nucleus,

M(λµ) =
λ∑

ν=−λ

Mintr(λν)Dλ
µν(Ω) , (3.2)

where Dλ
µν(Ω) is the rotation-matrix in the notation of ref. [8]. Matrix elements ofM(λµ)

are given as follows.

⟨I2M2K2α2|M(λµ)|I1M1K1α1⟩
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=
λ∑

ν=−λ

⟨K2α2|Mintr(λν)|K1α1⟩⟨I2M2K2(Ω)|Dλ
µν(Ω)|I1M1K1(Ω)⟩

=
λ∑

ν=−λ

⟨K2α2|Mintr(λν)|K1α1⟩
√
2I1 + 1

2I2 + 1
⟨I1M1λµ|I2M2⟩⟨I1K1λν|I2K2⟩ . (3.3)

In the last line of the above equations, the first Clebsch-Gordan coefficient demands |∆I|

≡ |I2 − I1| ≤ λ and |∆M | ≡ |M2 −M1| ≤ λ, while the second one requires further

|∆K| ≡ |K2 −K1| ≤ λ. (3.4)

This restriction (eq. 3.4) is called the K-selection rule: The change in the K-quantum

number can not exceed the multipolarity of the radiation in transitions between states

having definite K-quantum numbers.

The K-selection rule is violated to some extent on account of the mixing of states

having different K-quantum numbers (K-mixing) in real nuclei. The hindrance factor

FW for K-forbidden transitions is defined usually on the basis of the Weisskopf unit 1 for

transition probabilities,

FW =
BWeisskopf unit(E or M, λ)

Bexperimental(E or M, λ)
. (3.5)

Empirically, FW is known to obey an exponent-rule,

FW = (fW)n , n = |∆K| − λ , (3.6)

where n is theK-forbiddenness and fW is the hindrance factor per n. Rusinov [6] proposed

that

fW ∼ 100 , (3.7)

which implies that the amplitude for band-mixing with |∆K|=1 is ∼ 10−1 [8]. Löbner

compiled many experimental data and confirmed that the reduced transition probabilities

decrease approximately by a factor of 100 per n. He found, however, that the usage of the

Weisskopf unit for basis is not always meaningfull since absolute values of FW are likely

to be shifted to higher values in comparison with eqs. (3.5 - 3.7) [7]. This is not a serious

problem for largely K-forbidden cases because of the exponent-dependence of FW on n.

1The Weisskopf unit [39] [8] is calculated using a nuclear radius parameter r0=1.2 fm in this paper.
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It is worth while noting that eq. (3.7) gives only a rough estimation and the values of fW

for various nuclei scatter in the interval

1
<∼ log10 fW

<∼ 2, (3.8)

which is found e. g. in ref. [16].

The main origin for the mixing of the K-quantum number is the Coriolis interaction, i.

e. excitation of intrinsic motions due to collective rotation. The expression for the Coriolis

interaction is obtained naturally in the strong-coupling-scheme particle-rotor model [8],

which includes the collective rotational motion of the entire nucleus in addition to single-

particle motions in deformed nuclear potential,

Hstrong
PR = Hintr +

2∑
κ=1

h̄2

2J
(Iκ − Jκ)2 , (I3 = J3)

= Hintr +
h̄2

2J
(I⃗2 − I23 ) −

h̄2

2J
(J+I− + J−I+) +

h̄2

2J
(J⃗2 − J2

3 ) , (3.9)

where I⃗ and J⃗ are the total and the non-collective angular momenta respectively. The

four terms in the last line of eqs. (3.9) are the intrinsic, rotation, Coriolis, and the recoil

terms, respectively, in which only the Coriolis term can mix states having different I3

(=K). The Coriolis interaction has no effects only when I=0 (and hence K=0). What

should be noted is that K-mixing occurs even in bandhead states — like K-isomers —

when the band has non-zero K.

It is not certain whether we can apply the empirical rule (eqs. (3.5 - 3.8)), which

is obtained mainly for well-deformed nuclei, to the Kπ=10+ isomers in 182W and 184Os

treated in this paper. The first reason is that these nuclei are transitional nuclei having

relatively small deformation (β ∼ 0.2). Since the strength of the Coriolis interaction

is proportional to the reciprocal of the moment of inertia 1/J (eq. (3.9)), its effect is

enhanced in these less deformed nuclei. The second reason is that these isomers have a

configuration involving only an intruder orbital νi13/2. The intruder orbital is affected

strongly by the Coriolis interaction on account of the largeness and the purity of its

angular momentum. Hence the Coriolis interaction should be treated carefully in order

to study the structure of these K-isomers.
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Another possible origin for K-mixing is the triaxial deformation of the nucleus, which

mixes K even in single-particle orbitals. The γ-vibration can also mix K as well as the

static triaxiality, as is described in the last chapter. It is probable that K-isomeric decays

are sensibly affected by the triaxiality besides the Coriolis interaction.

3.2 K-isomers in Hf-W-Os region

Many high-K isomers are found at or near the yrast levels in Hf isotopes and in the

neighboring nuclei. This situation is caused by a strong shell effect: There are many

Nilsson orbitals having large Ω 2 near the Fermi level for Hf, W and Os nuclei. By

exciting quasi-particles in these orbitals, high-spin states can be formed at excitation

energies as low as the energy of collective rotation [40].

The K-isomers observed in Hf isotopes have the typical characters of K-isomer like

long half-lives and K-selective decay patterns. The neighboring even-even nuclides — W

and Os — are also expected to have similar isomers judging from the location of the Fermi

level. They are, however, transitional nuclei, which have smaller deformation and larger

γ-softness than Hf isotopes. We show the energy levels of the low-spin members of the

ground and the γ-band for some N = 108 isotones in fig. 3.1 , where energies are divided

by those of the 2+gr states. The nuclei 182W and 184Os are still deformed rotational nuclei

since their ground-band spectra show the pattern of rotational motion. The energy of the

γ-bandhead is, however, lowered rapidly as Z increases. It is interesting to see what is

brought about to the typical K-isomers in Hf isotopes by this increase in γ-softness.

Some transitions largely violating the K-selection rule in these nuclei are compiled in

table 3.1. The Kπ=8− isomers having N ∼ 106 are thought to have a two-quasi-particle

configuration ( ν[514]7/2−, ν[624]9/2+ ) whose excitation energy is very low. In 178Hf106,

180W106, and
182Os106, the values of fW are 74.8, 54.6, and 48.7 respectively. It is suggested

that the degree of K-mixing becomes large as Z increases in this region.

The Kπ=10+ isomers in 182W and 184Os have much smaller fW (∼ 5) than the Kπ=8−

isomers (fW ∼ 50). As is already described in chapter 1, these isomers are observed to

2The quantum number Ω is the third component (in the intrinsic frame) of the angular momentum of
a single-particle orbital.
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decay very rapidly in spite of theK-selection rule. The experimental data for the decays of

these isomers are summarized in fig. 3.2. In 1977 Jeltema and his collaborators observed

the Kπ=10+ isomer in 182W which decays directly into the ground-band states with a

relatively short half-life of 1.4 µs despite the change in K as large as 10 [16]. They

considered that the small values of fW for this decay is due to the sensitiveness of the

i13/2 orbital to the Coriolis interaction. In 1988 Chowdhury and his collaborators found

the Kπ=10+ isomer in 184Os, which has still smaller fW than the isomer in 182W [13].

They suggested that the γ-softness of these nuclei plays the important role for these large

violations of the K-selection rule, while they depreciated the role of the νi13/2 orbital.

The large change in fW between the Kπ=8− isomer and the Kπ=10+ isomer would be

due to the difference in their configurations. The Z-dependence in fW for each isomer is,

however, likely to be attributed to the change in the deformation and in the γ-softness.

Although the Kπ=8− isomers are found in more nuclei than the Kπ=10+ ones, the former

are hard to deal with on account of the complicated structure of the normal-parity orbitals.

The latter are easier to treat because of the simple configuration involving solely the νi13/2

orbital 3. Therefore we take up the Kπ=10+ isomers in this paper. We try to obtain

information on the γ-degree of freedom from the decays of these K-isomers, through the

estimation of the two important factors of K-mixing — the Coriolis interaction and the

triaxiality — equally in a quantitative way.

3The two Kπ=10+ isomers in 182W and 184Os are the only K-isomers observed so far which involve
the νi13/2 orbital exclusively in prolately deformed nuclei (not oblate yrast traps [41]) [16]. This isomer
has not been found in 180Hf yet.
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Table 3.1: Electromagnetic transitions largely violating the K-selection rule in even-even
Yb - Pt nuclei. Only largely K-forbidden transitions whose partial half-lives are known
are included in this table, although more isomers are found in these nuclei. Compilation
of the data of other isomers are found e. g. in refs. [10] [41] [45] [46].

Nucleus (I,K)π (I,K)π ∆E Half-life Feeding ratio of λ n fW Refs.
of of of the the final state,

initial final [ keV ] initial internal conversion
state state state coefficients

176Yb (8, 8)− (8, 0)+ 96.1 11.7 [s] 100 % , α = 0.38 E1 7 94 [10] [42]
176Hf (6, 6)+ (6, 0)+ 736.2 9.5 [µs] Iγ=78 M1 5 49 [43]

(4, 0)+ 1043.0 Iγ=45 E2 4 43 [43]
(14, 14)− (13, 8)− 38.7 401. [µs] Iγ=5.0 , α = 12 M1 5 30 [43]

(12, 8)− 302.2 Iγ=44 E2 4 23 [43]
(12, 8′)− 227.9 Iγ=9.8 E2 4 23 [43]

178Hf (8, 8)− (8, 0)+ 88.9 4.0 [s] 100 % , α = 0.49 E1 7 79 [10] [42] [44]
(16, 16)+ (13, 8)− 12.7 31 ± 1 [y] 99.8 % ,α = 1.5× 107 E3 5 66 [10]

(12, 8)− 309.5 (K) 0.13 % , αK = 5.2 M4 4 64 [10]
180Hf (8, 8)− (8, 0)+ 57.5 5.5 [h] — E1 7 233 [10]
180W (8, 8)− (8, 0)+ 390.3 5.2 [ms] 100 % E1 7 55 [10] [42]
182W (10, 10)+ (10, 0)+ 518.5 1.4 [µs] Iγ=63 M1 9 6.4 [16]

(8, 0)+ 1086.5 Iγ=73 E2 8 5.1 [10] [16]
182Os (8, 8)− (8, 0)+ 554. 0.8 [ms] 100 % E1 7 49 [10] [13] [42]
184Os (10, 10)+ (10, 0)+ 495. 20 [ns] Iγ=6/100 (delayed) M1 9 5.0 [13]

(8, 0)+ 1092. Iγ=12/100 (delayed) E2 8 3.6 [13]
184Pt (8, 8)− (8, 0)+ 610.1 1.0 [ms] Iγ=64/120 (delayed) E1 7 58 [10] [42]
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Figure 3.1: The γ-softness of N=108 isotones. The ratios of excitation energies of 4+gr,
6+gr, and 2+γ states to that of the 2+gr state are shown. The energy level of the 2+gr state is
given in the parentheses.
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Figure 3.2: Experimental data about the Kπ=10+ isomers.
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Chapter 4

The model

We use a kind of particle-rotor model to simulate the decay of these short-lived K-isomers

into the states of the ground band. In our model non-collective motions, such as particle-

hole excitation and rotational alignment, occur only in particles in the unique-parity

orbital (intruder orbital), i. e. the νi13/2 orbital in this case. Other particles in normal-

parity orbitals are called the core and are replaced by some collective model. In this

chapter the collective part of the model is described at first. Then the scheme of coupling

between the collective modes and the particles in the unique-parity orbital is presented.

4.1 The Bohr model

4.1.1 The full hamiltonian

As we aim at the study of the axially asymmetric deformation of well-deformed nuclei,

we employ the Bohr model of quadrupole surface vibrations and rotations [1] as the core

of our model : It has explicitly a variable γ which represents the degree of freedom of ax-

ially asymmetric deformation. The Bohr model may be relevant to the giant quadrupole

resonances, rather than to the low-lying quadrupole vibrations and rotations. The ir-

rotational flow is rather a good approximation for the giant resonances but vortex flow

should be introduced for the low-lying quadrupole motions [47] [48]. Nevertheless we

utilize the Bohr model because of its nice feature of symmetry of a quantum liquid drop

with quadrupole shape motions, e. g. the moment of inertia about the symmetry axis is

zero. We do not use the value of the mass parameter B given by Bohr [1], but we reserve

it for a energy-scaling parameter to simulate the low-lying quadrupole motions.
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Quadrupole surface deformations are uniquely determined by the normal coordinates

α2µ as

R(θ, φ) = R0

{
1 +

2∑
µ=−2

(−1)µα2µY
−µ
2 (θ, φ)

}
, α2µ = (−1)µα∗

2−µ , (4.1)

where R(θ, φ) is the distance of the surface from the center of the nucleus. In the Bohr

model, the intrinsic variables ( β and γ ) and Euler angles ( Ωc=(φc,θc, ψc)) are used in

stead of α2µ. These variables are defined using the deformation in the intrinsic frame (aν)

and the rotation matrix D2
µν in the notation 1 of ref. [8] .

aν =
2∑

µ=−2

α2µD
2
µν(Ωc) , (4.2)

with

a2 = a−2 = 2−1/2βsinγ , (4.3)

a1 = a−1 = 0 , (4.4)

a0 = βcosγ . (4.5)

In order to fulfill the single-valuedness of wave functions with respect to α2µ, Bohr’s

symmetry is required: The wave functions must be invariant with respect to transforma-

tions relabeling the principal axes of deformation. These transformations can be generated

by repeated application of the three basic transformations, i. e. R1, R2, and R3 [1] .

The hamiltonian of the full Bohr model is

HBohr = − h̄
2

2B

2∑
µ=−2

(−1)µ ∂2

∂α2µ∂α2−µ

+ V (β, γ) , (4.6)

= Tβ + Tγ + Trot + V (β, γ) , (4.7)

where

Tβ = − h̄
2

2B

1

β4

∂

∂β
β4 ∂

∂β
, (4.8)

Tγ = − h̄
2

2B

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
, (4.9)

Trot =
3∑

κ=1

h̄2

2Jκ

R2
κ , Jκ = 4Bβ2 sin2(γ − 2

3
πκ) . (4.10)

1DI
MK(Ω)=⟨IM |R(Ω)|IK⟩∗.
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In the above equations Tβ, Tγ, and Trot represent the kinetic energies of β-vibration, γ-

vibration, and rotation, respectively. V (β, γ) is the potential energy for deformations of

the intrinsic shape. In eqs. (4.10), Rκ and Jκ denote the angular momentum operator

and the moment of inertia for the rotation around the κth principal axis, respectively.

The sum of these kinetic energy terms is proportional to the five-dimensional laplacian

with respect to α2µ (eq. (4.6)).

4.1.2 The γ-soft model

In this paper, we fix the variable β at a constant value β0 and treat it as a static parameter,

because we aim at studying intensively the effects of the γ-degree of freedom on K-

isomerism. We call this β-fixed Bohr model as the γ-soft model [49] [50] from now on.

This model was introduced by Wilets and Jean [51] for the γ-unstable potential (V (β0, γ)

= constant). Qualitative properties of the model at high spin are discussed by Turner

and Kishimoto [52]. Its hamiltonian is

Hγ−soft = Tγ
∣∣∣
β=β0

+ Trot
∣∣∣
β=β0

+ V (γ) , (4.11)

where

V (γ) = V (β0, γ) . (4.12)

The energy is scaled only through a quantity (2h̄2/Bβ0
2) except for V (γ). In later sections

we designate this value by ϵc, which is the energy of the first excited state for V (γ) = 0.

Eigenstates of Hγ−soft are expressed as

|RMαc⟩ =
R∑

Kc=−R

|RMKc(Ωc)⟩ ⊗ |Φαc
RKc

(γ)⟩ , (4.13)

where

⟨δ(Ωc − Ω0
c)|RMKc(Ωc)⟩ =

√
2R + 1

8π2
DR

MKc
(Ω0

c) , (4.14)

⟨δ(γ − γ0)|Φαc
RKc

(γ)⟩ = Φαc
RKc

(γ0) . (4.15)

In the above expression, R is the quantum number of angular momentum (R=0,2,3,4,· · ·).

M and Kc are its components along the z-axis (of the laboratory frame) and the third

principal axis, respectively. Other quantum numbers to specify a state are represented by
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αc. Because of Bohr’s symmetry, the quantum number Kc takes on only even integers.

Amplitudes for the component having Kc and that having −Kc are related to each other

as

Φαc
R,−Kc

(γ) = (−1)RΦαc
RKc

(γ) , (4.16)

on account of the symmetry.

We consider wave functions only in the interval 0 ≤ γ ≤ π/3, utilizing Bohr’s symme-

try. The orthonormality of eigenstates,

⟨R′M ′αc
′|RMαc⟩ = δR′RδM ′Mδαc

′αc , (4.17)

is satisfied by the orthonormality of D-functions,

⟨R′M ′K ′
c(Ωc)|RMKc(Ωc)⟩

=

√
(2R′ + 1)(2R + 1)

8π2
×∫ π

0
dθc sin θc

∫ 2π

0
dφc

∫ 2π

0
dψc{DR′

M ′Kc
′(φc, θc, ψc)}∗DR

MKc
(φc, θc, ψc)

= δR′RδM ′MδKc
′Kc

, (4.18)

and by a requirement for intrinsic wave functions,

R∑
Kc=−R

⟨Φα′
c

RKc
(γ)|Φαc

RKc
(γ)⟩ =

R∑
Kc=−R

3
∫ π/3

0
Φ

α′
c

RKc
(γ)Φαc

RKc
(γ) sin 3γdγ = δα′

cαc . (4.19)

The potential energy for γ-deformation ( γ-potential ) should be a function of cos 3γ

as a consequence of Bohr’s symmetry. It can be expanded by Legendre polynomials of

cos 3γ. We take only the first two terms at most in this paper,

V (γ) =
2h̄2

Bβ0
2

2∑
l=1

VlPl(cos 3γ) . (4.20)

We vary V1 to control the γ-softness and vary V2 to shift the minimum point of the

potential.

When V (γ)=0 (the γ-unstable model [51] [53] [54]), eigenstates are labeled by the

quantum numbers µ and nγ in addition to R andM . For each R, these quantum numbers

take on the values of

µ = µmin, µmin + 1, µmin + 2, · · · , R , (4.21)

nγ = 0, 1, 2, 3, 4, 5, · · · , (4.22)
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where

µmin = µmin(R) =

{
R/2 for even R ,
(R + 3)/2 for odd R .

(4.23)

The seniority quantum number λ [53] is related to µ and nγ as

λ = µ + 3 nγ . (4.24)

The energies of states are determined only through λ,

Eλ =
2h̄2

Bβ0
2

λ(λ+ 3)

4
. (4.25)

Number of states for each R and each λ is given in table 4.1.

Wave functions of eigenstates of the γ-unstable model, G
λnγ

RKc
(γ), are given in the

manner of ref. [50] as follows:

G
λnγ

RKc
(γ) =

R∑
µ′=µmin(R)

nγ∑
nγ

′=0

B
Rλnγ

µ′nγ
′ (cos 3γ)nγ

′
gµ

′

RKc
(γ) , (4.26)

where

gµ
′

RKc
(γ) =

j∑
k=−j

f jk
RKc

(sin γ)j+k(cos γ)j−k√
(j + k)!(j − k)!

, (4.27)

with

j ≡ µ′

2
, k = −j,−j + 1,−j + 2, · · · , j . (4.28)

The coefficients B
Rλnγ

µ′nγ
′ and f jk

RKc
can be obtained by diagonalizing PI, which is the pro-

jection operator into the invariant subspace with respect to transformations of Bohr’s

symmetry group. Among the eigenstates of PI, those having eigenvalue of 1 and being

regular at γ=0◦ and γ=60◦ should be chosen.

When V (γ) ̸= constant, we diagonalize Hγ−soft using the bases of

|RMKc(Ωc)⟩ ⊗ |Gλnγ

RKc
(γ)⟩ , (4.29)

which are truncated by

λ ≤ λmax = 24 , (4.30)

or equivalently,

Eλ ≤ E24 =
2h̄2

Bβ0
2 × 162 ∼ 30MeV , (4.31)
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in this paper. Wave functions of γ for the eigenstates are expressed as

Φαc
RKc

(γ) =
∞∑

nγ=0

R∑
µ=µmin(R)︸ ︷︷ ︸

3nγ+µ≤λmax

aαc
R,3nγ+µ,nγ

G
3nγ+µ,nγ

RKc
(γ) . (4.32)

The method to solve the eigenvalue equation for Hγ−soft is described in detail in ref. [50].

4.1.3 The triaxial rotor model

The triaxial rotor model of Davydov and Filippov in which γ is fixed at a value γ0 is

considered as a special case of the γ-soft model. It is obtained in the limit of V1 → −∞

while keeping V1/3V2 = − cos 3γ0 in eq. (4.20). In the model, the wave-function for the

variable γ is assumed to be trapped in a deep potential well which has a minimum at γ0.

The hamiltonian is

Htriax = Trot
∣∣∣
β=β0,γ=γ0

. (4.33)

Considering the requirement of Bohr’s symmetry, eigenstates of Htriax are labeled by R

and |Kc|, which take on the values of

R = 0, 2, 3, 4, 5, · · · , (4.34)

|Kc| =

{
0, 2, 4, · · · , R for even R ,
2, 4, 6, · · · , R− 1 for odd R .

(4.35)

The number of states for each R is given in table 4.2.

4.1.4 The axially symmetric rotor model

For comparison, we also use the axially symmetric rotor model which does not have the

γ-degree of freedom. It is obtained by setting γ=0◦ in the hamiltonian of eq. (4.33). The

moments of inertia are changed in such a way that

J1 = J2 = J ≡ 3Bβ0
2 , J3 = 0 . (4.36)

The hamiltonian is written as

Hax.sym. =
h̄2

2J
(R2

1 +R2
2) =

h̄2

2J
R(R + 1) , R3 = 0 . (4.37)

The eigenstates are labeled only by R which takes on non-negative even integers,

R = 0, 2, 4, 6, 8, · · · . (4.38)

The number of states for each R is given in table 4.3.
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4.2 The particle-rotor model

4.2.1 Derivation from the shell-model hamiltonian

4.2.1.1 The shell-model hamiltonian

We use a kind of particle-rotor model in which the particle states are described not

in the intrinsic frame of the core but in the laboratory frame and are expanded with

spherical bases. This model was originally used for spherical nuclei [55]. As for the earlier

applications to deformed nuclei, see refs. [56]-[59]. Later works utilizing this model are

found in refs. [60] - [64]. At first we demonstrate how our particle-rotor model is derived

from a (spherical) shell-model hamiltonian and elucidate the bases and the scope of our

model. The shell-model hamiltonian is written as [65]

HSM =
∑
j

H0
j +

∑
j1≤j2

∑
j3≤j4

Vj1j2;j3j4 , (4.39)

where

H0
j =

∑
m

ϵja
†
jmajm, (4.40)

Vj1j2;j3j4 =
∑
JM

gJ(j1j2; j3j4)A
†
JM(j1j2)AJM(j3j4) . (4.41)

In the above expressions, the subscript j denotes the angular momentum, and also indi-

cates symbolically all the quantum numbers to designate a single-particle state (having

an energy level ϵj) except for the magnetic quantum number m. The creation operator

A†
JM generates a normalized state of a nucleon-pair coupled to an angular momentum J

and its z-component M :

A†
JM(j1j2) = (1 + δj1j2)

−1/2
∑

m1m2

⟨j1m1j2m2|JM⟩a†j1m1
a†j2m2

. (4.42)

The coefficient gJ is a matrix element of a residual two-body interaction V between

normalized states of two nucleons with a coupled angular momentum J :

gJ(j1j2; j3j4) = ⟨0|AJM(j1j2)V A
†
JM(j3j4)|0⟩ . (4.43)

The Kπ = 10+ isomers in 182W and 184Os have a configuration of a unique-parity

(intruder) orbital νi13/2, which is not mixed with energetically nearby orbitals by the
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single-particle potential with quadrupole deformation on account of parity conservation.

Therefore we may treat only the unique-parity orbital as the particle degrees of freedom.

Thus, using notations of

j0 ≡ ν i13/2 , (4.44)∑′

j

≡
∑

j (j ̸=j0)

, (4.45)

we divide HSM into three parts

HSM = Hc
SM +Hp

SM +H int
SM , (4.46)

where

Hc
SM =

∑′

j1

H0
j1
+
∑′

j1≤j2

∑′

j3≤j4

Vj1j2;j3j4 , (4.47)

Hp
SM = H0

j0
+ Vj0j0;j0j0 , (4.48)

H int
SM =

∑′

j1j2

Vj0j1;j0j2 +
∑′

j1≤j2

(Vj0j0;j1j2 + Vj1j2;j0j0)

+
∑′

j1

(Vj0j0;j0j1 + Vj0j1;j0j0) +
∑′

j1≤j2

∑′

j3

(Vj1j2;j0j3 + Vj0j3;j1j2) . (4.49)

4.2.1.2 The core part

In order to derive the particle-rotor model hamiltonian, we replace Hc
SM by a certain

collective model hamiltonian, Hγ−soft in this paper. Among the dependence of Hc
SM on

the number of particles in the core (nc), the dependence of the ground state energy is

included to the linear term of nc. The dependence of other quantities, excitation energies

and quadrupole matrix elements, is thought to be small and is ignored. (If required, we

can change the parameters of the core model for each nc without largely changing our

formalism.) Thus we replace Hc
SM by Hc:

Hc = λcn̂c +Hγ−soft (, Htriax, Hax. sym ) . (4.50)

The physical meaning of λc is the Fermi level of the core and appears only in combination

with ϵj0 as ϵj0 − λc . Eigenstates of Hc are expressed as

|RMαc, nc⟩ = |RMαc⟩ ⊗ |nc⟩ , (4.51)

where |RMαc⟩ is given in eq. (4.13) and is operated on only by the second term in Hc.

The state |nc⟩ is concerned only with the first term in Hc; n̂c|nc⟩ = nc|nc⟩ .
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4.2.1.3 The particle part

We treat Hp
SM in a fully microscopic way. As the residual interaction V in the j0 orbital,

we use the delta interaction [65] between a particle at r⃗1 and another one at r⃗2 :

V (r⃗1, r⃗2) = −4πV0δ(3) (r⃗1 − r⃗2) . (4.52)

We define a quantity G as

G = V0

∫ ∞

0
{R0(r)}4r2dr , (4.53)

where R0(r) is the radial part of the wave function of the j0 orbital. The matrix element

gJ of this interaction is given by

gJ(j0j0; j0j0) = −G
(2j0 + 1)2

2

⟨j0 − 1
2
j0

1
2
|J0⟩2

2J + 1
. (4.54)

For J=0, it reads as

g0(j0j0; j0j0) = −G
2j0 + 1

2
. (4.55)

The value of G is considered to be the same as that of the strength GBCS of the ordinary

pairing interaction used in the BCS model of nuclei (found e. g. in ref. [66]),

HBCS
pair = −1

4
GBCS

∑
j1

j1∑
m1=−j1

∑
j2

j2∑
m2=−j2

a†j1m1
(−1)j1−m1a†j1−m1

(−1)j2−m2aj2−m2aj2m2 .

(4.56)

Corresponding values of g0 to this interaction is

gBCS
0 (j1j1; j2j2) = −GBCS

√
(2j1 + 1)(2j2 + 1)

2
, (4.57)

which has the same form as eq. (4.55) for j1=j2=j0. The value of G
BCS recommended by

Baranger and Kumar [66] is

G = GBCS ≃ 22MeV/A for neutrons , (4.58)

where A is the mass number. The values of gJ for the νi13/2 orbital of A=184 nuclei (

G=22 MeV/184=0.120 MeV) are shown in table 4.4. The effective interaction of Onishi

and Negele [67] for the shell-model calculations are also given for comparison.

Basis-states of n particles in the j0 orbital are constructed using the coefficients of

fractional parentage (c.f.p.)[68]. The c.f.p.’s are obtained by diagonalizing the antisym-

metrization operator (the projection operator into the fully antisymmetric subspace) on
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the bases composed of the direct product of the antisymmetric states of n − 1 particles

and the states of another particle. The states thus obtained are labeled by the number

of particles n, the total angular momentum J , its z-component M , seniority v, and the

necessary additional quantum numbers αp as

|j0n ( v αp ) J M ⟩ . (4.59)

The following values are taken on by n and v :

n = 0, 2, 4, · · · , 2j0 + 1 , (4.60)

v = 0, 2, 4, · · · ,min(n, 2j0 + 1− n) . (4.61)

Only even values of n have to be considered because we intend to treat positive parity

states. The number of states for each set of values of n, v, and J are tabulated in tables

4.5 and 4.6 . Matrix elements of operators between these bases (eq. 4.59) are calculated

using formulae given in ref. [68].

4.2.1.4 The QQ interaction

Now we approximate H int
SM by Hint which is suitable for interactions between a particle

and the core described with the Bohr model. The first term in eq. (4.49) does not include

transfer of particles and corresponds to the interaction between the surface deformation

α2µ and the particles in the particle-rotor model. Potential energy for a particle at r⃗

exerted by the deformed core is considered to be expressed as

V (r⃗) = V0

(
R0

R(θ, φ)
r
)
, (4.62)

where R(θ, φ) is given in eq. (4.1). Expanding R(θ, φ) with respect to α2,

V (r⃗) = V0

(
r − r

2∑
µ=−2

(−1)µα2µY
−µ
2 (θ, φ) +O(α2

2)
)

= V0(r)− r
dV0(r)

dr

2∑
µ=−2

(−1)µα2µY
−µ
2 (θ, φ) +O(α2

2) . (4.63)

The first term in the last line of above equations is the spherical mean potential and have

no relation with surface deformation α2 . The second term is a quadrupole-quadrupole
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interaction between the core and the particle. Thus the first term in eq. (4.49) may be

replaced by HQQ,

HQQ = −κ
∑
µ

(−1)µα2µ

β0

j0∑
m′=−j0

j0∑
m=−j0

⟨j0m′(θ, φ)|Y −µ
2 (θ, φ)|j0m(θ, φ)⟩a†j0m′aj0m , (4.64)

where

κ = β0

⟨
R0(r)

∣∣∣∣rdV0(r)dr

∣∣∣∣R0(r)
⟩
. (4.65)

If we assume a harmonic oscillator single-particle potential,

V0(r) =
1

2
mω2r2 , h̄ω = 41 MeV × A−1/3 , (4.66)

the matrix element of r2 is related to Nj0 (the total oscillator quantum number for the

j0-orbital, Nj0=6 for j0=i13/2) as

⟨R0(r)|r2|R0(r)⟩ =
h̄

mω
(Nj0 +

3

2
) . (4.67)

Thus we obtain

κ = h̄ωβ0(Nj0 +
3

2
) . (4.68)

4.2.1.5 The Cooper-pair exchange interaction

The second term in eq. (4.49) expresses an exchange of a pair of particles between the

unique-parity orbital and the core. Because the range of the nucleon-nucleon interaction

is short, the dominantly exchanged pair is the J = 0 one. Thus we approximate this term

by a Cooper pair exchange interaction,

Hpair = −
G

4
(P †

pPc + P †
cPp) , (4.69)

where the strength G is the same as that in eq. (4.58). P †
p (P †

c ) is a creation operator of

a Cooper pair in the j0 orbital (in the core):

P †
p =

√
2(2j0 + 1)A†

00(j0j0) =
j0∑

m=−j0

(−1)j0−ma†j0ma
†
j0−m, (4.70)

P †
c =

∑′

j1

Sj1

√
2(2j1 + 1)A†

00(j1j1) =
∑′

j1

j1∑
m=−j1

(−1)j1−mSj1a
†
j1ma

†
j1−m , (4.71)
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where

Sj1 =
2gJ(j0, j0; j1, j1)

G
√
(2j0 + 1)(2j1 + 1)

. (4.72)

For the matrix elements of P †
c and Pc, we assume the following form [62]:

⟨R′M ′α′
c, n

′
c|(−

G

4
P †
c )|RMαc, nc⟩ = −δR′RδM ′Mδα′

cαcδn′
c,nc+2

∆′

2
, (4.73)

⟨R′M ′α′
c, n

′
c|(−

G

4
Pc)|RMαc, nc⟩ = −δR′RδM ′Mδα′

cαcδn′
c,nc−2

∆′

2
. (4.74)

When the ordinary pairing interaction of eq. (4.56) is adopted, Sj1 turns out to be unity.

Employing the BCS ground state as the state of the core, we find that ∆′ is the pairing

gap energy which does not include the contribution from the j0 orbital,

∆′ = 2
⟨
BCS

∣∣∣G
4

∑′

j1

j1∑
m=−j1

(−1)j1−ma†j1ma
†
j1−m

∣∣∣BCS⟩ (4.75)

=
G

2

∑′

j1

j1∑
m=−j1

uj1mvj1m (4.76)

= ∆− G

2

j0∑
m=−j0

uj0mvj0m . (4.77)

where ∆ is the (full) pairing gap energy of the nucleus.

We can rewrite Hpair as

Hpair = −
∆′

2

∑
m

(−1)j0−m(Ta†j0ma
†
j0−m + T †aj0−maj0m) , (4.78)

where T † and T operate only on |nc⟩ : T † |nc⟩ = |nc+2⟩, T |nc⟩ = |nc− 2⟩. In this paper

the label nc is practically dummy. If we identify core states differing only in nc, T
† and T

are replaced by 1 and Hpair turns out to be a pairing field in the j0 orbital, which is used

e. g. in ref. [69].

4.2.1.6 The resulting particle-rotor model hamiltonian

The third term and the fourth term in eq. (4.49) vanish due to parity conservation because

we neglect contributions from much higher-lying orbitals having the same parity as the

j0 orbital. Thus Hint is finally expressed as

Hint = HQQ +Hpair . (4.79)

The resulting hamiltonian of the particle-rotor model is given by

HPR = Hc +Hp
SM +Hint . (4.80)
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4.2.2 Wave functions

Eigenstates of the total system are expanded in terms of so-called weak coupling bases as

|IMα⟩ =
∑

RαcnvαpJ

AIα
RαcnvαpJ [ |Rαc, A− n⟩ ⊗ |jn0 (vαp)J⟩ ]IM . (4.81)

On the left hand side of above equation, I is the total angular momentum and M is its

z-component, while α denotes the necessary additional quantum numbers. On the right

hand side, amplitudes are denoted by AIα
RαcnvαpJ . The bases of the core are designated by

its angular momentum R, number of particles in the core A− n (A is the mass number),

and the additional quantum number αc. The bases of particles are labeled by the number

of particles in the j0 orbital n (n = 0, 2, 4, · · · , 2j0 + 1) , seniority v, angular momentum

J , and the additional quantum number αp. It should be noted that states of particles are

described in the laboratory frame, not in the intrinsic frame of the core. Consequently

spherical bases are used for the particles.

Since wave functions described in the intrinsic frame are convenient to understand

the structure of states, we now express the bases on the right hand side of eq. (4.81) in

terms of so-called strong coupling bases in which particles are described in the frame of

the principal axis of the deformation of the core. Quantum numbers having nothing to

do with rotations are included in αc and αp from now on in this paper:

|j0n(vαp)JM⟩ → |JMαp⟩ , (4.82)

|RMαc, A− n⟩ → |RMαc⟩ . (4.83)

Eq. (4.81) is expressed briefly as

|IMα⟩ =
∑

RαcJαp

AIα
RαcJαp

[ |Rαc⟩ ⊗ |Jαp⟩ ]IM . (4.84)

Due to the fact that the particle bases have definite angular momentum, we can rotate

the particle bases together with the intrinsic frame of the core by a relatively simple

transformation,

|JMαp⟩ =
J∑

Kp=−J

|JKpαp⟩ΩcD
J
MKp

(Ωc) . (4.85)
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The subscript Ωc attached to the ket-vector indicates that the state is expressed in the

intrinsic frame. Using eqs. (4.13)-(4.15) and (4.85), we obtain

| [Rαc ⊗ Jαp]
IM⟩ =

R∑
Kc=−R

J∑
Kp=−J

BRJI
KcKp
|Φαc

RKc
(γ)⟩|JKpαp⟩Ωc

|IM,Kc +Kp(Ωc)⟩ , (4.86)

where

BRJI
KcKp

=

√
2R + 1

2I + 1
⟨RKcJKp|I, Kc +Kp⟩ . (4.87)

The state of the core as for γ can be expanded by employing bases independent of R and

Kc,

|Φαc
RKc

(γ)⟩ = 3
∫ π/3

0
dγ0 sin 3γ0 Φ

αc
RKc

(γ0) |δ(γ − γ0)⟩ . (4.88)

Expanding the bases on the right hand side of eq. (4.84) using eq. (4.86) and eq. (4.88),

we obtain

|IMα⟩ = 3
∫ π/3

0
dγ0 sin 3γ0

∑
Jαp

∑
KcKp

CIα
γ0JαpKcKp

|δ(γ − γ0)⟩ |JKpαp⟩Ωc |IMKc +Kp(Ωc)⟩ ,

(4.89)

where

CIα
γ0JαpKcKp

=
∑
Rαc

AIα
RαcJαp

BRJI
KcKp

Φαc
RKc

(γ0) . (4.90)

As an application of the new expansion (4.89), we show the expression for the proba-

bility distribution of the K-quantum number. The K-quantum number is the component

of the total angular momentum I along the third principal axis of the core 2. The third

components of R and J in the intrinsic frame of the core are denoted by Kc and Kp

respectively (K = Kc +Kp) . The quantum number Kc takes on only even integers due

to the symmetry as for π-rotation around the 3-axis, while Kp and K take on both even

and odd integers.

We can define the probability of K-quantum numbers as follows,

ρIα(Kc, Kp) = 3
∫ π/3

0
dγ0 sin 3γ0

∑
Jαp

|CIα
γ0JαpKcKp

|2

=
∑

JαpR′α′
cRαc

(AIα
R′α′

cJαp
)∗BR′JI

KcKp
⟨Φα′

c
R′Kc

(γ)|Φαc
RKc

(γ)⟩AIα
RαcJαp

BRJI
KcKp

.(4.91)

2It should be noted that the third principal axis is always the longest axis even in a γ-fluctuating
model because 0 ≤ γ ≤ π/3 in our choice. This condition is explicitly taken into account in the interval
of integration with respect to γ for inner product (eq. (4.19)).
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Considering the R1 symmetry of the core (eq. (4.16)) and

BRJI
−Kc,−Kp

= (−1)R+J−IBRJI
Kc,Kp

, (4.92)

we can obtain

ρIα(−Kc,−Kp) =
∑

JαpR′α′
cRαc

(AIα
R′α′

cJαp
)∗BR′JI

−Kc−Kp
⟨Φα′

c
R′−Kc

(γ)|Φαc
R−Kc

(γ)⟩AIα
RαcJαp

BRJI
−Kc−Kp

= ρIα(Kc, Kp) . (4.93)

By summing up ρ for K and ρ for −K, we define the probability for |K| as

ρIα(|K|) = 2 (1 + δ|K| 0)
−1
∑
Kc

ρIα(Kc, |K| −Kc) . (4.94)

4.2.3 The Coriolis interaction in the laboratory-frame model

In the strong-coupling particle-rotor model, the Coriolis interaction is obtained from the

rotational energy term in the hamiltonian (eq. 3.9). In the weak-coupling model described

in the laboratory frame, the rotational energy term Trot (eq. 4.10) concerns only to the

core coordinates and it might seem that there were no Coriolis interaction.

The two models are, however, equivalent as for the treatment of rotation. When the

coordinates of the particles are transformed from those referring to the laboratory frame

(say x⃗)to those based on the intrinsic frame of the core (say ξ⃗), HQQ (eq. (4.64)) becomes

independent of the Euler angles of the core ( Ωc ):

HQQ = −κ
∑
µ

(−1)µα2µ

β0
Y −µ
2 (x̂)

= −κ
∑
ν

(−1)ν a2ν
β0

Y −ν
2 (ξ̂) , (4.95)

where aν does not depend on Ωc (eq. (4.3–4.5)). Thus Ωc becomes a cyclic coordinate and

its conjugate momentum becomes an integral of motion, i. e. the total angular momentum.

Other angular-momentum operators of the partial systems are expressed through the

coordinates shown below:

Intrinsic-frame model Laboratory-frame model

R⃗ Ωc , ξ⃗ Ωc

J⃗ ξ⃗ x⃗

I⃗ Ωc Ωc , x⃗
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Hence Trot turns out to contain the interaction between the core coordinates and the

particle coordinates, i. e. the Coriolis interaction. This situation is clearly shown by

rewriting R⃗ as I⃗ − J⃗ ( since I⃗=R⃗+J⃗ ),

Trot =
3∑

κ=1

h̄2

2Jκ

R2
κ =

3∑
κ=1

h̄2

2Jκ

(Iκ − Jκ)2 , (4.96)

where Iκ concerns only to Ωc while Jκ depends solely on ξ⃗.

4.2.4 Advantages of the description in the laboratory frame

In order to treat the particle-rotor model, there are two approaches, the weak coupling

one and the strong coupling one. In the former (the latter), the particle-rotor model

hamiltonian is diagonalized in the weak (strong) coupling bases. Results are the same

between the two approaches if they are obtained exactly. But in practical calculations, it

is important to clarify merits and demerits of the two approaches.

The strong coupling approach has an advantage in the truncation of the particle states:

Particle bases are usually taken as Nilsson single-particle states, which are generally

thought to be good approximation. But we have to take into account more configu-

rations than usual in treating the Kπ = 10+ isomers, because the Coriolis mixing effect

is stronger in the high-j unique-parity orbital than in other orbitals. It is also stronger

at high spin than at low spin. Thus it is not very clear whether we may consider only a

few Nilsson orbitals.

In the weak coupling approach the number of bases is likely to become enormous.

This is a shortcoming inherent in the shell model. But in treating the isomers in which

only single-j configurations are involved, the number of states is small enough, so that

truncation is not necessary using the computers in the present day. Hence it is not a

defect of the approach.

Furthermore, the weak coupling approach has an advantage that it is relatively easy to

consider various motions of the core like the γ-vibration : We can solve the core and the

particle system separately and then couple them only through the quadrupole-quadrupole

and the Cooper-pair exchange interactions which are strong but simple. Existing algo-

rithms are available to solve the core models. In the strong coupling model, however,
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the rotations of the total system, intrinsic collective motions like the γ-vibration, and

the motions of the particles are coupled in such a complicated way that they can not be

separated effectively. Thus we take the weak coupling approach.

4.2.5 Electromagnetic transitions

Operators of electromagnetic transitions are expressed as follows:

M(M1, µ) = µN

√
3

4π

(
gcR⃗ + gν

∑
m′

∑
m

⟨j0m′|J⃗ |j0m⟩a†j0m′aj0m

)
, (4.97)

with {
gc = Z/A ,
gν = −0.223 assuming gl = −0.05 and gs = 0.6× gfrees ,

(4.98)

and

M(E2, µ) =
3ZeR2

0

4π
α2µ +

∑
m′

∑
m

⟨j0m′|eeffr2Y µ
2 (θ, φ)|j0m⟩a

†
j0m′aj0m , (4.99)

with {
R0 = 1.2 fm × A1/3 ,
eeff = eZ/A .

(4.100)

In the above expressions, µN(= eh̄/2mpc) is the nuclear magneton, and A and Z are the

mass and the atomic number of the nucleus. The value of the neutron’s g-factor is taken

from ref. [8] (observed gν of the [624]9/2
+ orbital is −0.22 for 179Hf). In order to calculate

the matrix element of r2, we assume the harmonic oscillator wave function (eq. (4.67)).
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Table 4.1: Number of states of the γ-unstable core for each spin R and each seniority λ.
The multiplicity of states due to the degeneracy as for M is not counted.

R µ λ ( = µ + 3 nγ ; nγ = 0, 1, 2, 3, · · · )
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 ≤ µ ≤ 0 1 1 1 1 1 1
1 2 ≤ µ ≤ 1
2 1 ≤ µ ≤ 2 1 1 1 1 1 1 1 1 1 1
3 3 ≤ µ ≤ 3 1 1 1 1 1
4 2 ≤ µ ≤ 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 4 ≤ µ ≤ 5 1 1 1 1 1 1 1 1
6 3 ≤ µ ≤ 6 1 1 1 2 1 1 2 1 1 2 1 1 2
7 5 ≤ µ ≤ 7 1 1 1 1 1 1 1 1 1 1 1
8 4 ≤ µ ≤ 8 1 1 1 2 2 1 2 2 1 2 2 1
9 6 ≤ µ ≤ 9 1 1 1 2 1 1 2 1 1 2
10 5 ≤ µ ≤ 10 1 1 1 2 2 2 2 2 2 2 2
11 7 ≤ µ ≤ 11 1 1 1 2 2 1 2 2 1
12 6 ≤ µ ≤ 12 1 1 1 2 2 2 3 2 2 3
13 8 ≤ µ ≤ 13 1 1 1 2 2 2 2 2
14 7 ≤ µ ≤ 14 1 1 1 2 2 2 3 3 2
15 9 ≤ µ ≤ 15 1 1 1 2 2 2 3
16 8 ≤ µ ≤ 16 1 1 1 2 2 3 3 3
17 10≤ µ ≤ 17 1 1 1 2 2 2
18 9 ≤ µ ≤ 18 1 1 1 2 2 2 3
19 11≤ µ ≤ 19 1 1 1 2 2
20 10≤ µ ≤ 20 1 1 1 2 2 2
21 12≤ µ ≤ 21 1 1 1 2
22 11≤ µ ≤ 22 1 1 1 2 2
23 13≤ µ ≤ 23 1 1 1
24 12≤ µ ≤ 24 1 1 1 2
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Table 4.2: Number of states of the triaxial rotor model for each R. The multiplicity of
states due to the degeneracy as for M is not counted.

R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
min Kc 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
max Kc 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20
# states 1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 11

Table 4.3: Number of states of the axially symmetric rotor model for each R. The
multiplicity of states due to the degeneracy as for M is not counted.

R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# states 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 4.4: The two-body interaction for the neutrons in the i13/2 orbital.

delta int. delta int. Onishi-Negele
G=0.120 MeV A=176,Z=76

J gJ/G gJ [MeV] gJ [MeV]
0 −7.0000 −0.840 −0.907
2 −1.7231 −0.207 −0.400
4 −0.9329 −0.112 −0.142
6 −0.6062 −0.073 −0.078
8 −0.4168 −0.050 −0.046
10 −0.2818 −0.034 −0.027
12 −0.1642 −0.020 +0.010
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Table 4.5: Number of states of n fermions in a single j orbital (1/2 ≤ j ≤ 7/2). The
multiplicity of states due to the degeneracy as for M is not counted.

j=1/2

2× J 0 Total

v=0 1 1

2× J 1 Total

v=1 1 1

j=3/2

2× J 0 2 4 Total

v=0 1 1
v=2 1 1

2× J 1 3 5 Total

v=1 1 1

j=5/2

2× J 0 2 4 6 8 Total

v=0 1 1
v=2 1 1 2

2× J 1 3 5 7 9 Total

v=1 1 1
v=3 1 1 2

j=7/2

2× J 0 2 4 6 8 10 12 14 16 Total

v=0 1 1
v=2 1 1 1 3
v=4 1 1 1 1 4

2× J 1 3 5 7 9 11 13 15 17 Total

v=1 1 1
v=3 1 1 1 1 1 5

44



Table 4.6: Number of states of n fermions in a single j orbital (9/2 ≤ j ≤ 13/2). The
multiplicity of states due to the degeneracy as for M is not counted.

j=9/2

2× J 0 2 4 6 8 10 12 14 16 18 20 22 24 Total
v=0 1 1
v=2 1 1 1 1 4
v=4 1 1 1 2 1 2 1 1 1 1 1 13

2× J 1 3 5 7 9 11 13 15 17 19 21 23 25 Total
v=1 1 1
v=3 1 1 1 1 1 1 1 1 1 9
v=5 1 1 1 1 1 1 1 1 1 1 10

j=11/2

2× J 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Total
v=0 1 1
v=2 1 1 1 1 1 5
v=4 1 2 1 3 2 3 2 3 2 2 1 2 1 1 1 27
v=6 1 1 2 2 1 3 2 2 2 2 1 2 1 1 1 1 25

2× J 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 Total
v=1 1 1
v=3 1 1 1 2 1 1 2 1 1 1 1 1 14
v=5 1 1 2 3 2 3 3 3 3 3 2 2 2 1 1 1 1 34

j=13/2

2× J 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
v=0 1
v=2 1 1 1 1 1 1
v=4 1 3 1 4 3 4 3 5 3 4 3 3 2 3 1 2 1 1
v=6 2 1 3 4 6 4 8 6 7 7 7 5 7 5 5 4 4 2 3

2× J 38 40 42 44 46 48 Total
v=0 1
v=2 6
v=4 1 48
v=6 2 1 1 1 1 96

2× J 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
v=1 1
v=3 1 1 1 2 2 1 2 2 1 2 1 1 1 1 1
v=5 1 2 4 4 5 5 6 6 6 6 6 5 5 4 4 3 2 2 2
v=7 2 1 2 4 3 4 5 4 5 5 4 4 5 3 3 3 2 2 2

2× J 39 41 43 45 47 49 Total
v=1 1
v=3 20
v=5 1 1 1 81
v=7 1 1 1 1 67
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Chapter 5

Details of the numerical calculation

5.1 Parameters of the model

The following values are used for the parameters of the model:

parameter 182W (182W) 184Os

ϵc given in table 5.1
β0 0.24 (0.22) 0.20
κ =h̄ωβ0(Nj0 + 3/2)
G 0.120 MeV
∆′ 0.527 MeV (0.564 MeV) 0.639 MeV

ϵj0 − λc −0.629 MeV (−0.552 MeV) −0.480 MeV

As for 182W, besides the best fitted parameter set (β0 = 0.24, · · ·), we used another set

(β0 = 0.22, · · ·) for the sake of comparison. These values are determined in the manners

described below:

1. ϵc : The energy-scaling parameter of the core (=2h̄2/Bβ0
2).

It is adjusted so as to fit the excitation energy of the 2+gr state to the experimental

value ( 0.100 MeV for 182W and 0.120 MeV for 184Os ) including the effects of

coupling with the particles.

2. β0 : The deformation parameter.

The value of β0 is determined in order to reproduce the experimental transition

amplitudes between the 0+gr state and the 2+gr state [70] including the effects of

coupling with the particles. Calculated reduced matrix elements for this transition
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are given in table 5.2. It can be seen from the table that the experimental values

are reproduced within ±2% by using β0=0.24 for 182W and within the interval from

−3% to +1% by setting β0=0.20 for 184Os. Thus we determine not to change the

value of β0 from core to core and to fix it at the single value for each nucleus. As

for 182W, we also use β0=0.22 for comparison.

3. κ : The strength of the quadrupole-quadrupole interaction.

Its value is obtained using eq. (4.68), where a harmonic oscillator single-particle

potential is assumed. We calculated the value of κ for a Woods-Saxon potential

with parameters given in ref. [8] (for A=182 and Z=76) and obtained κ = 1.07 ×

h̄ωβ0 (Nj0 + 3/2) for the νi13/2 orbital. But we do not employ this value because

the parameters for the spherical potentials do not seem very reliable especially in

deformed nuclei.

4. G : The strength of the two body interaction in the νi13/2 orbital.

We used eq. (4.58) to determine its value.

5. ∆′ : The strength of the Cooper-pair exchange interaction.

Its value is determined so that the experimental excitation energy of the Kπ = 10+

isomer ( 2.231 MeV for 182W and 2.365 MeV for 184Os ) is reproduced when the

axially symmetric rotor is employed as the core. The obtained values of ∆′ are used

for all the cores because the difference of core models does not affect significantly

the energy level of the isomer.

By using eq. (4.76), we can estimate the value of ∆′ microscopically. By employing

the single-particle space of two oscillator shells (N=5,6), where the parameters of

the Nilsson potential are taken from ref. [8], we solved the BCS gap equation with

G=0.120 MeV under a constraint ⟨#neutron⟩ = 108 and obtained

∆′
micro = 0.633 MeV (∆micro = 0.821 MeV) for 182W, β0 = 0.24 ,

∆′
micro = 0.714 MeV (∆micro = 0.943 MeV) for 184Os, β0 = 0.20 .

These values are only a little larger (by 11-20%) than the adopted values.
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6. (ϵj0 −λc) : The energy necessary to transfer a neutron from the Fermi level to the

i13/2 orbital.

It is determined so that the expectation value of n (the number of neutrons in the

i13/2 orbital) becomes 10 in the ground state when the axially symmetric rotor is

used as the core. The value of n is expected to be 10 from the Nilsson diagram of

energy levels for N=108 isotones. These values are used for all the cores because

the expectation value of n is found not sensitive to the shape of the γ-potential.

5.2 Truncation of states and its convergence

5.2.1 Full inclusion of the particle states

We solve the eigenvalue equation for HPR by numerical diagonalization. The number of

particle states |jn0 ⟩ (n = 0, 2, 4, · · · , 14) is 428 (see table 4.6, the multiplicity due to the

degeneracy with respect to m is not counted) and all of them are taken into account.

Therefore we do not have to assume the weakness of the coupling between the core and

the particles, although we use so-called weak coupling bases.

In the early works using the laboratory-frame particle-rotor model, only low-seniority

(v ≤ 2) states are included in order to keep the matrix dimensions in manageable size

[56]-[58]. The seniority truncation was, however, shown to be a poor approximation at

least when the j0-orbital is half occupied [59]. This result is plausible considering the

deformation of the nucleus. Therefore we should not truncate states according to the

value of seniority, which is a suitable quantum number for labeling states in spherical

nuclei.

We take into account all the allowed values also for n. The probability distribution

of n are shown in table 5.3 for states of the particles ⊗ core system. It seems that states

with n ≤ 2 may be excluded on account of their small probabilities. But reduction of

matrix size due to such truncation is only very small. Thus such truncation is useless.

5.2.2 Truncation of the core states

The angular momentum of the core is restricted by R ≤ 20. This truncation is confirmed

to have no effects on the decay amplitudes of the Kπ = 10+ isomers. The number of
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states of the γ-soft core is, however, infinite at each spin R and we must truncate them

in numerical diagonalization. We use two schemes of truncation.

1. The λ′-truncation scheme

In this scheme, core states with λ ≤ λ′max are included in the case of the γ-unstable

model, where λ′max is an arbitrarily chosen number. When V (γ) is not constant,

the same number of states from the yrast level for each R are taken into account

as are included in the γ-unstable case using the same λ′max. An illustration of this

truncation scheme is given in figure 5.1 for a rather γ-soft core. The energy spectrum

of this core is hardly disturbed compared to the unperturbed (V (γ) = 0) spectrum

(eq. (4.25)) except for in the neighborhood of the yrast levels.

It should be noted that the core states are obtained by diagonalizing Hγ−soft in the

space of λ ≤ 24 when V (γ) ̸= 0. Thus for more γ-stiff potentials, less number of

core eigenstates are necessary since the coupling with the particles has smaller effects

compared to V (γ). The energy spectrum for a rather γ-stiff core is shown in figure

5.2. By using the same λ′max, higher-lying states can be included in comparison with

the case of the γ-soft core (figure 5.1).

2. The Nγ-truncation scheme

In the harmonic γ-vibrational model (neglecting the rotation-vibration coupling),

states are labeled by R, Nγ, and |Kc|, where Nγ is the number of γ-vibrational

phonons. The following values are taken on by |Kc| for each Nγ :

|Kc| = 2Nγ, 2Nγ − 4, 2Nγ − 8, · · · ,
{

0 for even Nγ ,
2 for odd Nγ .

(5.1)

In the Nγ-truncation scheme, we include core states having Nγ not greater than

Nmax
γ , where Nmax

γ is an arbitrarily chosen number. For anhamonic cores (like cores

of the γ-soft model and the triaxial rotor model), the same number of states from

the yrast level for each R are taken into account. The number of states for each

Nmax
γ and each R is given in table 5.4. Figure 5.3 illustrates this truncation scheme.

We show the effects of truncation of core states on isomeric decay probabilities and

some energy levels for 182W in table 5.5 and for 184Os in table 5.6. The employed cores are
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those of the γ-soft model whose γ-softness V1 is determined to reproduce the experimental

energy of the γ-bandhead while V2 is assumed to be zero.

In the Nγ-truncation scheme, some isomeric decay probabilities do not converge with

respect to Nmax
γ even if 4-phonon states are included. In order to calculate small quantities

like transition matrix elements of isomeric decays, small components of wave functions

must be treated very carefully. This truncation scheme is not suitable for treating isomeric

decays in γ-soft nuclei.

On the other hand, in the λ′-truncation scheme, it seems sufficient to take into account

the core states with λmax=11 in order to obtain enough accuracy in the calculation of the

decay probabilities. Hence in the calculations where the γ-soft model is employed, we

include core states with R ≤ 20 and λmax = 11. In other words, in terms of energy levels,

we include the core states with energies about less than 8 MeV. (ϵc ≃ 0.2 MeV.)

As for the triaxial rotor model, number of states at each spin R are finite and relatively

small, and we can include all the states (satisfying Bohr’s symmetry) with R ≤ 20. The

energy spectrum for γ0=15◦ rotor is shown in figure 5.4.

5.3 Convergence in the Lanczos algorithm for the Di-

agonalization

The dimension of the matrix to be diagonalized at I = 10 is 3158 if only the ground band

states of the core are taken into account. It is 40362 when core states with λmax = 11

and R ≤ 20 are employed. (See table 5.6.) Thus some efficient methods are necessary in

numerical diagonalization.

We use the Lanczos algorithm [71]. In this method an initial vector is multiplied by the

hamiltonian to generate the second vector with intervening orthogonalization. And the

descendent vectors are generated by iterating this procedure. The sequence of vectors thus

obtained makes new bases which almost exhaust the eigenstates whose eigenvalues are

near the both ends of the spectrum, even when the procedure is stopped in the half-way.

The convergence of isomeric decay amplitudes are confirmed as for the number of

iterations, i. e. the number of new bases thus obtained. It is found sufficient to iterate

about 110 times. Energy levels converge more quickly. We obtained the results presented
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in this paper by iterating 120 ∼ 150 times.
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Table 5.1: The energy-scaling parameter of
the core ϵc (=2h̄2/Bβ0

2 ) used in the cal-
culation. They are determined so as to fit
the experimental values of E(2+gr) ( and also
E(2+γ ) in parts (C)∼(E)) including the ef-
fects of coupling with the particles.

Core model ϵc [MeV]

(V1, V2) or γ
182W 182W 184Os

β0=0.24 β0=0.22 β0=0.20

(A) γ-vibrational model
(0, 0) — 0.1630 0.1780
(−2, 0) 0.1831 0.1754 0.1973
(−4, 0) 0.1914 0.1844 0.2115
(−6, 0) 0.1974 0.1909 0.2215
(−8, 0) 0.2019 0.1957 0.2286
(−10, 0) 0.2054 0.1994 0.2337
(−12, 0) 0.2081 0.2023 0.2377

(B) Triaxial rotor model
γ0=30◦ — — 0.1758
γ0=25◦ 0.1655 0.1617 0.1916
γ0=20◦ 0.1881 0.1835 0.2173
γ0=15◦ 0.2100 0.2048 0.2426
γ0=12◦ 0.2213 0.2158 0.2556
γ0=10◦ 0.2277 0.2220 0.2630
γ0=0◦ 0.2429 0.2367 0.2805

(C) Those reproducing E(2+γ ) of
184Os, β0=0.20

(−2.99, 0) — — 0.2050
(−5.71, 3) — — 0.2071
(−10.05, 7) — — 0.2097
(−20.12, 15) — — 0.2129
(−41.59, 30) — — 0.2165
(−72.96, 50) — — 0.2194
γ0=14.89◦ — — 0.2431

(D) Those reproducing E(2+γ ) of
182W, β0=0.22

(−6.96, 0) — 0.1935 —
γ0=12.18◦ — 0.2152 —

(E) Those reproducing E(2+γ ) of
182W, β0=0.24

(−6.05, 0) 0.1975 — —
γ0=12.32◦ 0.2202 — —

Table 5.2: Calculated and experimental re-
duced E2 matrix elements between the 0+gr
state and the 2+gr state.

Core model ⟨0+gr||M(E2)||2+gr⟩ [e fm2 ]

(V1, V2) or γ
182W 182W 184Os

β0=0.24 β0=0.22 β0=0.20

(A) γ-vibrational model
(0, 0) — — 173
(−2, 0) 200 184 173
(−4, 0) 200 184 174
(−6, 0) 201 185 174
(−8, 0) 202 185 175
(−10, 0) 202 186 175
(−12, 0) 202 186 175

(B) Triaxial rotor model
γ0=30◦ — — 179
γ0=25◦ 201 186 175
γ0=20◦ 200 184 174
γ0=15◦ 202 186 176
γ0=12◦ 204 188 177
γ0=10◦ 205 189 178
γ0=0◦ 208 191 181

(C) Those reproducing E(2+γ ) of
184Os, β0=0.20

(−2.99, 0) — — 173
(−5.71, 3) — — 173
(−10.05, 7) — — 173
(−20.12, 15) — — 173
(−41.59, 30) — — 173
(−72.96, 50) — — 173
γ0=14.89◦ — — 176

(D) Those reproducing E(2+γ ) of
182W, β0=0.22

(−6.96, 0) — 185 —
γ0=12.18◦ — 188 —

(E) Those reproducing E(2+γ ) of
182W, β0=0.24

(−6.05, 0) 201 — —
γ0=12.32◦ 204 — —

Experiment 204 204 179
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Table 5.3: Probability distribution of the number of particles in the νi13/2 orbital.

184Os, (V1, V2) = (−2.99, 0), β0=0.20

n Probability Probability The number of The Number of states
at 10+gr at 10+K=10 particle states of the total system

at I=10
0 9.05×10−8 1.×10−12 1 11
2 1.49×10−5 6.98×10−7 7 591
4 8.40×10−4 1.14×10−4 55 5247
6 1.99×10−2 6.09×10−3 151 14332
8 1.94×10−1 1.25×10−1 151 14332
10 6.05×10−1 8.30×10−1 55 5247
12 1.73×10−1 3.89×10−2 7 591
14 6.83×10−3 1.38×10−7 1 11

Total 1 1 428 40362

Table 5.4: The number of states of the γ-vibrational model.

Truncation R
scheme 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
Nmax

γ =0 1 1 1 1 1 1 1 1 1
Nmax

γ =1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Nmax

γ =2 2 3 1 4 2 4 2 4 2 4 2 4 2 4 2 4
Nmax

γ =3 2 4 2 5 3 6 4 6 4 6 4 6 4 6 4 6
Nmax

γ =4 3 5 2 7 4 8 5 9 6 9 6 9 6 9 6 9
Nmax

γ =5 3 6 3 8 5 10 7 11 8 12 9 12 9 12 9 12
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Table 5.5: Effects of the truncation of the core states on the isomeric decays and some
energy levels for 182W. B(M1) and B(E2)a belong to the transition from the 10+2 to 10+gr.

B(E2)b belongs to the transition to 8+gr. The last column gives the number of states of the
core without counting the degeneracy with respect to the magnetic quantum number.

182W, (V1, V2) = (−6.05, 0), β0=0.24, R ≤ 20

Truncation B(M1) B(E2)a B(E2)b E(2+γ ) E(10+gr) E(10+2 ) Number of
scheme [ µ2

N ] [ e2fm4 ] [ e2fm4 ] [ MeV ] [ MeV ] [ MeV ] core states
λ′max = 11 5.87×10−8 1.77×10−4 6.10×10−5 1.222 1.626 2.199 123
λ′max = 10 5.87×10−8 1.77×10−4 6.10×10−5 1.222 1.626 2.199 98
λ′max = 9 5.97×10−8 1.80×10−4 6.21×10−5 1.222 1.627 2.199 76
λ′max = 8 6.08×10−8 1.82×10−4 6.70×10−5 1.224 1.636 2.199 57
λ′max = 7 5.87×10−8 2.14×10−4 7.66×10−5 1.230 1.679 2.200 42
Nmax

γ = 4 5.76×10−8 1.67×10−4 6.10×10−5 1.224 1.625 2.199 133
Nmax

γ = 3 7.68×10−8 2.86×10−4 6.63×10−5 1.237 1.625 2.198 92
Nmax

γ = 2 1.90×10−9 7.17×10−5 2.84×10−5 1.304 1.623 2.197 58
Nmax

γ = 1 5.90×10−7 3.53×10−3 2.26×10−4 1.452 1.613 2.191 30
Nmax

γ = 0 6.63×10−6 1.43×10−2 7.81×10−3 — 1.723 2.222 11

Table 5.6: Effects of the truncation of the core states on the isomeric decays and some
energy levels for 184Os. B(M1) and B(E2)a belong to the transition from the 10+2 to 10+gr.

B(E2)b belongs to the transition to 8+gr. The last column gives the number of states of
the coupled system consisting of the core and the i13/2 neutrons at I=10 and at a certain
value of M .

184Os, (V1, V2) = (−2.99, 0), β0=0.20, R ≤ 20

Truncation B(M1) B(E2)a B(E2)b E(2+γ ) E(10+gr) E(10+2 ) Dimension
scheme [ µ2

N ] [ e2fm4 ] [ e2fm4 ] [ MeV ] [ MeV ] [ MeV ] at I=10
λ′max = 11 2.64×10−5 4.51×10−2 1.45×10−2 0.943 1.791 2.354 40362
λ′max = 10 2.64×10−5 4.50×10−2 1.45×10−2 0.943 1.791 2.354 31848
λ′max = 9 2.64×10−5 4.50×10−2 1.46×10−2 0.943 1.792 2.354 24256
λ′max = 8 2.68×10−5 4.51×10−2 1.56×10−2 0.944 1.799 2.354 17786
λ′max = 7 3.04×10−5 5.15×10−2 2.16×10−2 0.946 1.836 2.354 12456
Nmax

γ = 4 2.63×10−5 4.50×10−2 1.45×10−2 0.944 1.791 2.354 42274
Nmax

γ = 3 2.77×10−5 4.70×10−2 1.51×10−2 0.949 1.791 2.354 29068
Nmax

γ = 2 2.21×10−5 2.97×10−2 1.25×10−2 0.991 1.788 2.354 17966
Nmax

γ = 1 1.25×10−4 2.10×10−1 5.25×10−2 1.189 1.780 2.357 9160
Nmax

γ = 0 9.45×10−4 3.95×10−1 7.02×10−1 — 1.916 2.423 3158
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Figure 5.1: The scheme of the λ′-truncation
for the states of the core. A rather γ-soft
core is used.

Figure 5.2: The scheme of the λ′-truncation
for the states of the core. A rather γ-stiff
core is used.
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Figure 5.3: The scheme of the Nγ-
truncation for the states of the core.

Figure 5.4: Energy spectrum of the triaxial
rotor model with γ0=14.89◦.
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Chapter 6

Results of numerical calculations

6.1 Features of axially symmetric rotor ⊗ ν i13/2 sys-

tem

At first let us learn the decay of high-K isomers in a model in which the axially symmetric

rotor is coupled with the i13/2 neutrons in order to see the effects of Coriolis mixing

separately from those concerning the γ-degree of freedom.

We calculate the partial half-lives of the Kπ = 10+ isomers, considering only the M1

and the E2 transitions into the members of the ground band ( the 8+gr and the 10+gr states

). Transition energies used in calculating transition probabilities are taken from experi-

ments to concentrate our attention on the changes in wave functions. The contribution

of internal electron conversion process is negligible (αK < 6 × 10−2) for the enegies and

the multipolarities of these transitions [13] [72].

Using parameters described in chapter 5, we obtain the follwoing partial half-lives.

182W 184Os
β0=0.24 β0=0.20

Experiment 1.4µs
×12← 120 ns

↓ × 2300 ↓ × 17

Calculation 3.20 ms
×1600← 2.05µs

The calculated half-lives are much longer than the experimental ones.

Now we show the effects of changing parameters. Among the parameters of the model,

ϵc and κ (or β0) have large effects on the decay amplitudes of the isomer, while G, ∆′,

57



and ϵj0 − λc do not affect them much (see figure 6.1).

Effects of changing the energy scaling parameter of the core (ϵc) are shown in table

6.1. Other parameters are those adjusted for 184Os described in chapter 5. The energy

level of the 2+gr state (including the effects of coupling with the particles) is shown in the

second column (E(2+gr)). The half-life of the isomer decrease rapidly with the increase in

ϵc: The B(M1) and the B(E2) values of the decay from the isomer increase by a factor of

about 10 when E(2+gr) increases by 10 keV from 120 keV. But the large ϵc reproducing the

experimental half-life can not consistently reproduce the experimental energy spectrum

of the ground band.

This strong dependence of isomeric decay probabilities on ϵc is due to the fact that ϵc

is the factor of the Coriolis mixing perturbation (see eqs. (3.9) and (??)). The probability

distribution of the K-quantum number is shown in figure 6.2 for the 10+gr state and the

Kπ = 10+ isomer. We can see that the degree of K-mixing becomes large when ϵc

increases. The anomalous enhancement of the probability around K=10 (K=0) for the

10+gr state (the Kπ = 10+ isomer) means the mixing of the two states caused by the

crossing of their energy levels.

In table 6.2, we show the effects of changing the strength κ of the quadrupole-

quadrupole interaction for 184Os. The quantity κ/h̄ω(Nj0 +3/2) given in the first column

is equal to the deformation parameter β0 when a harmonic oscillator single-particle poten-

tial is assumed, although we did not change the value of β0 in the definition (4.99) of the

E2 transition operatorM(E2) (α2µ ∝ β = β0). Since the change in κ largely affects the

number of neutrons (n) in the i13/2 orbital, we adjust the value of ϵj0 − λc for each value

of κ in order to maintain ⟨n⟩ = 10 in the ground state. From the table, it can be said that

κ has also large effects on the decay amplitudes. In order to reproduce the experimental

half-life of the isomer, κ/h̄ω(Nj0 + 3/2) must be 0.17, which means, however, too small

deformation for 184Os.

These large effects of the change in κ on the half-lives of the isomer can be explained

as follows: The quadrupole-quadrupole interaction HQQ separates the energy levels of

orbitals having different Ω. When its strength κ becomes large, the energy denominator

of the Coriolis perturbation increases and the mixing of K is depressed. The changes in
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the K-mixing are shown in figure 6.3.

Considering this strong dependence of the Coriolis mixing on parameters, we can say

that the difference in the half-lives of the isomer between the two nuclei are not simply

ascribed to the diffecrence in the γ-softness. In fact, from table 6.1, when the energy

level of the 2+gr state is decreased from 120 keV (like in 184Os) to 100 keV (like in 182W),

the half-life becomes longer by a factor of 40. From table 6.2, when the deformation

parameter β0 (=κ/h̄ω(Nj0 + 3/2) ) is increased from 0.20 (like in 184Os ) to 0.24 (like in

182W), the half-life becomes longer by a factor of 30. Totally, the calculated half-life for

182W is 1600 times as large as that for 184Os, which exceeds the experimental difference

(12 times) without the γ-degree of freedom.

In conclusion, using the axially symmetric rotor, the absolute values of the experimen-

tal half-lives are overestimated with reasonable values of κ (or deformation β0) and ϵc (or

moment of inertia). The analyses in this section invoke the introduction of the γ-degree

of freedom.

6.2 Effects of the γ-degree of freedom

Next, we take into account the γ-degree of freedom and calculate the half-lives of the

isomers. In this section we employ the two extreme models treating the γ-degree of

freedom. One is the γ-vibrational model, i. e. the γ-soft model of eq. (4.11) which has a

γ-potential of eq. (4.20) with V2=0:

V (γ) = ϵcV1 cos 3γ . (6.1)

In the model, the variable γ fluctuates around γ=0◦. The other is the triaxial rotor model

of eq. (4.33), in which γ is fixed at some constant value γ0.

The parameters of the model are fixed at the values described in chapter 5. In the

calculation of half-lives, we take into account only the M1 and the E2 transitions into the

ground band states (8+gr and 10+gr). Although the isomer can decay into the 8+γ state in

our model, its contribution to the total half-life is very small according to our calculation:

The transition from the isomer to the 8+γ state and the transition to the 8+gr state have

amplitudes of the same order, but the energy of the γ-ray in the former transition is about
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one-tenth as large as that in the latter transition. The I=9 state to which the isomer

decays with a large fraction in experiment for 184Os does not exist in our model space.

The transition energies are taken from the experiments as in the last section.

In figures 6.4-6.6 we show the relationship between the half-life of theKπ = 10+ isomer

and the energy level of the γ-bandhead for 184Os using β0=0.20, 182W using β0=0.22, and

182W using β0=0.24, respectively. Figure 6.5 (β0=0.22) is given for reference, although

the experimental value of B(E2;2+gr → 0+gr) is reproduced well when β0=0.24 (as in figure

6.6). The two models with some values of V1 (for the γ-vibrational model) and γ (for

the triaxial rotor model) are used in each fugure. We can see a general tendency, as we

expected, that the half-lives of the isomers become shorter as the core becomes more γ-soft

or more γ-deformed. When the triaxial rotor model is used in figures 6.5–6.6, however,

the partial half-life behaves irregularly with respect to γ0. This anomaly would be due to

the interference between the Coriolis interaction and the triaxial potential exerted by the

core.

The most remarkable point in figures 6.4–6.6 is that the half-lives calculated with the

γ-vibrational model are shorter than those calculated with the triaxial rotor model by

more than two orders of magnitude. This characteristic feature is discussed in detail in

the following sections in comparison with quantities of collective character which are not

changed much between the two models.

When the γ-softness (V1) or the size of the γ-deformation (γ0) is determined by fitting

the energy of the γ-bandhead to the experimental value (including the effects of coupling

with the particles) for each core model, the experimental half-lives are located between

(or in the neighborhoods of) those calculated with the two extreme models. Assuming

the present set of parameters are reliable, we can say that the nucleus 182W is much like

the γ-vibrational model while the nucleus 184Os is rather like the triaxial rotor model

from the viewpoint of K-isomeric decays. It should be noted that this result does not

necessarily mean the rigid triaxial nature of some transitional nuclei (184Os), as the success

of Meyer-ter-Vehn’s model did not (see chapter 2). In later sections, we show that the

crucial point in these K-isomeric decays is how large the quantum fluctuation in the size

of triaxial deformation is, not whether the equilibrium shape is triaxial or not. It can be
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said that we can extend our knowledge about the shape of the γ-potential from the degree

of violation of the K-selection rule.

We show the probability distribution of the K-quantum number, defined by eq. (4.94),

for the 10+gr state and the isomer in 184Os in figs. 6.7 and 6.8. The γ-vibrational model

is employed in figure 6.7, while the triaxial rotor model is utilized in figure 6.8. If we

utilize the axially symmetric rotor model (γ=0◦), the probability distribution is linear in

the logarithmic scale: The Coriolis interaction is just perturbative. If we introduce the

γ-degree of freedom, the probabilities of large-K (small-K) components increase largely in

the ground band state ( in the isomer ) for the both models. Since the probabilities of the

mixing of the K-quantum number have strong correlations with the calculated half-lives

shown in figure 6.4, we can say, as we expected, that the reduction in the half-lives follows

the mixing of K-quantum number.

6.3 Effects of the coupling with the particles on the

core

Before discussing the K-isomeric decays more intensively, we just mention how the prop-

erties of the core are changed through the coupling with the ∼10 neutrons in the i13/2

orbital.

1. The moment of inertia increase by ∼20% (judging from the energy of the 2+gr state

when the axially symmetric rotor model is used).

2. The E2 transition amplitudes increase by ∼7% (in the transition from the 2+gr state

to the 0+gr state).

3. The M1 transitions occur through the coupling with the particles, while they do not

exist between the states of bare cores (sinceM(M1)core ∝ R⃗, where R⃗ is a conserved

quantity).

4. The γ-softness is decreased when the γ-soft model is used. The probability distri-

bution function of γ for the state |IMα⟩ (eq. (??)) of the system consisting of the
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core and the particles are defined as

ρIα(γ0) =
1

3 sin 3γ0
⟨IMα|δ(γ − γ0)|IMα⟩ =

∑
JαpRKc

∣∣∣∑
αc

AIα
RαcJαp

Φαc
RKc

(γ0)
∣∣∣2 , (6.2)

which satisfies the normalization condition of

3
∫ π/3

0
ρIα(γ0) sin 3γ0dγ0 = 1 . (6.3)

In figure 6.10, these probability distributions are shown for the γ-potentials given in

the upper right hand portion of figure 6.9. Comparing the distributions with those

for the bare cores (also given in the figure), we can see the γ-stiffening effects of the

particles.

The γ-driving effects of the particles are likely to be simulated by an effective γ-

potential, which can be estimated using the single-j Nilsson model: We put 10

neutrons into the i13/2 orbital with a quadratically deformed single-particle potential

specified by β0 and γ0. The energy of the ground state configuration is regarded as

the potential energy for deformation V p(β0, γ0), where the superscript p attached

to V indicates that the potential is of the particles. We determine the value of

V p
1 so that 2ϵcV

p
1 = V p(β0, 0

◦) − V p(β0, 60
◦). We obtain ϵcV

p
1 = −1.27 MeV (i.

e. V p
1 ≃ −6) for 182W (β0=0.24) and ϵcV

p
1 = −1.05 MeV (i. e. V p

1 ≃ −5) for

184Os. These effective γ-potentials of the particles and the γ-potentials of the bare

core are of the same order of magnitude. We must include this contribution from

the particles together with the γ-potential of the bare core in order to obtain the

effective γ-potential for the entire nucleus.

5. The effective size of γ-deformation of the coupled system (γeff) is hardly changed

from the value of γ0 of the bare core when the triaxial rotor model is used. We

can define γeff for each state in such a way that the quadrupole moment 1 of a bare

triaxial rotor having γ0 = γeff agrees with that of the coupled system. In the case

of γ0 = 15◦ for 184Os, γeff turns out nearly equal to γ0 at low spin and slightly less

(by ∼ 1◦) than γ0 at I ∼ 10 in the states of the ground band.

1Quadrupole moments (∝ ⟨I||M(E2)||I⟩) are sensitive to the γ-deformation, while E2 transitions
(⟨I − 2||M(E2)||I⟩) are not.
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6.4 Effects of the potential shape

We investigate the effects of the shape of the γ-potential to explain the difference in

the half-life of the K-isomer between the two extreme models. The γ-soft model having

positive values of V2 mediates between the two models studied in the last section. We

consider the isomer only in 184Os in this section.

We use the γ-potentials of the form of eq. (4.20). We vary V2 to change the shape

of the γ-potential, while V1 is determined for each V2 so that the experimental energy

level of the γ-bandhead is reproduced including the effects of coupling with the particles.

Other parameters are fixed at the values adjusted for 184Os as described in chapter 5.

The shapes of the γ-potentials used in the calculation are illustrated in the upper right

hand portion of figure 6.9. The γ-potential changes in the shape from a potential having

a relatively shallow minimum at γ=0◦ (the γ-vibrational model) to a deep potential well

having a minimum at a finite value of γ (close to the limit of the triaxial rotor model). In

the upper left hand portion of figure 6.9, the shapes of γ-potentials for the γ-vibrational

model (V2=0) are also shown for comparison.

On the left hand side of figure 6.11, we show the effects of changing the shape of the

γ-potential on the decay probabilities of the Kπ = 10+ isomer. The probabilities of the

decay of the isomer decrease rapidly as the shape of the γ-potential approaches the limit

of the triaxial rotor model.

Collective transitions are, however, not affected much. Some of them are shown on

the right hand side of figure 6.11. Among the transitions and moments in the ground

band, the γ-band, and the Kπ = 10+ band (I ≤ 12), the most largely changing ones of

collective character are the quadrupole moments of the high spin states of the γ-band.

They are presented as B(E2) values in the figure, which change by a factor of order one

with the replacement of the γ-vibrational core by the triaxial rotor one. But their changes

are much less than the changes in the isomeric transitions which vary by a factor of order

two. Calculated transition probabilities from the isomer are summarized in table 6.3.

Other reduced E2 transition probabilities at low spin are shown in table 6.4 for reference.

The lower right hand portion of figure 6.9 shows the probability distribution of the
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variable γ in the ground state. (The particles are not coupled with 2.) It is defined as

ρ′Rαc
(γ0) = ⟨RMαc|δ(γ − γ0)|RMαc⟩ = 3 sin 3γ0

R∑
Kc=−R

|Φαc
RKc

(γ0)|2 . (6.4)

The prime (′) is attached to ρRαc in order to designate that the volume element (3 sin 3γ)

is inlcuded. The follwoing normalization condition is fulfilled by ρ′Rαc
,∫ π/3

0
ρ′Rαc

(γ0)dγ0 = 1 . (6.5)

We can see that the peak of the distribution of γ stays at almost the same location,

but the tail of the distribution decreases drastically with the change in the shape of the

γ-potential. Therefore the origin of the difference between collective transitions and the

isomeric ones seems that the former are determined by the average value of γ, while the

latter are determined by the fluctuation in γ, i. e. the tail of the wave function at large

γ: The components of large γ-deformation are necessary to mix the K-quantum number

and to violate the K-selection rule. Further investigations are given in the next section.

As for this enhancement of the K-isomeric transitions due to the γ-softness, other

explanations are conceivable, which turn out unsuccessful in this case.

1. The γ-soft core can change its shape at high spin (so as to increase the moment

of inertia), while the triaxial rotor can not. But in our calculation such a change

in shape is found very small up to I=10, which is seen from figure 6.10. More

specifically, the value of γeff (defined in section 6.3) varies from γeff ≃ 17◦ (at I=2)

to γeff ≃ 15.5◦ (at I=10) in the ground band states of the system consisting of

the particles and the γ-soft core with (V1, V2) = (−2.99, 0). This change in γeff is

opposite [50] [52] to explain the difference in the half-life between the two models.

2. The isomeric state is expected to be more γ-soft than no-quais-particle states on

account of the change in the configuration, when γ-soft cores are used. The γ-

driving forces of the particles in the isomer are estimated to be weaker than those

in the ground band states by a factor of 0.7 judging from the effective γ-potential

calculated for the lowest one-particle one-hole state in the framework of the single-j

2Probability distribution of γ for the coupled system are found in figure 6.10, where the volume element
of (3 sin 3γ) is not included.
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Nilsson model described in section 6.2 . But such effects are also small, as is shown

in figure 6.10.

Now let us check the details of the isomeric decay for 184Os. The multipolarity of

the transition from the isomer to the 10+gr state is dominantly M1 in experiment. In our

calculation, the contribution of M1 is ≥ 0.97 for the cases given in the part (C) of table

6.3, in good agreement with the experiment.

The experimental branching ratio of the 8+gr state to the 10+gr state is 2.0 in the decay

of the isomer. The calculated ratios are 0.47 to 0.67 for the cases given in the part (C) of

table 6.3, which are not in quantitative agreements with the experiment.

Before ending this section, we discuss the shape of the γ-potential preferred by the

K-isomeric decay rates for 184Os. In order to reproduce the experimental half-life of the

isomer in addition to E(2+γ ), we have to employ a γ-potential having (V1, V2) ≃ (−62, 43),

which is obtained by interpolating the calculated half-lives given in table 6.3. The shape

of this γ-potential is shown in figure 6.12. It is worth while noting that the form of the

γ-potential is restricted to linear combinations of P1(cos 3γ) and P2(cos 3γ) (eq. 4.20) in

our calculations. Inclusion of higher order terms (P3(cos 3γ), P4(cos 3γ),· · ·) will bring

about different γ-potentials which also reproduce the half-life and E(2+γ ). In particular,

the shape of V (γ) near γ = 0◦ may be easily changed through such inclusion of the higher

order terms, since neither the K-isomeric decay rates nor collective quantities like E(2+γ )

have much information on the wave function at small γ. The potential energy at γ = 60◦

also has large ambiguities: it is very high (29 MeV from the ground state energy) and is

unlikely to have significant meaning. The determination of the coefficints of the higher

order terms (V3, V4, · · ·) is a problem for future works.
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6.5 Further investigation of the fast K-isomeric de-

cays due to the γ-softness

In this section, we investigate the mechanism through which the K-isomer decays quickly.

At first we calculate the probability distribution of the K-quantum number for each value

of γ. It is defined for the state |IMα⟩ (eq. (??)) as

ρIα(γ0, Kc, Kp) =
∑
Jαp

|CIα
γ0JαpKcKp

|2 (6.6)

=
∑

JαpR′α′
cRαc

{AIα
R′α′

cJαp
BR′JI

KcKp
Φ

α′
c

R′Kc
(γ0)}∗AIα

RαcJαp
BRJI

KcKp
Φαc

RKc
(γ0) .

It fulfills the normalization condition of

∑
KcKp

3
∫ π/3

0
ρIα(γ0, Kc, Kp)dγ0 sin 3γ0 = 1 . (6.7)

The expression for the totalK-quantum number, ρIα(γ0, |K|), is given in the same manner

as eq. (4.94).

In figures 6.13 and 6.14, ρIα(γ, |K|) is shown for the 10+gr state and theKπ=10+ isomer,

respectively, for 184Os. The γ-potentials are those reproducing the experimental E(2+γ )

including the effects of coupling with the particles. The distribution of the K-quantum

number,

ρIα(|K|) = 3
∫ π/3

0
ρIα(γ0, |K|) sin 3γ0dγ0, (6.8)

is also shown. (The definition (6.8) is equivalent to eq. (4.94).) From figure 6.14, we can

see that the large deviation from the Coriolis-like K-mixing (i. e. probability distributions

linear in logarithmic scale) is mainly due to the components of the wave function with

large γ-deformations. When we alter the core from the γ-vibrational one (part A of

the figure) to the γ-stiff one (part C), the components with large γ-deformations are

depressed on account of the decrease in the amplitude of the quantum fluctuation in γ.

Consequently, the anomalous K-mixing diminishes.

Another point to be seen in figure 6.14 is the existence of the second peak around K=0

when γ ∼ 0◦: The two states mix with each other in spite of the large difference in the

structure and in the energy level (∼ 0.5MeV). The height of the second peak is lowered

when the core becomes γ-stiff (A → C). Therefore this mixing is likely to be caused by
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the γ-softness. It may be regarded as the result of the barrier penetration process through

the γ=60◦ shape presented by Chowdhury and his coworkers [13] described in chapter 1

3.

Next, we study the distribution of the isomeric transition amplitudes with respect to

γ. The E2 transition amplitude can be expressed as an integral with respect to the size

of γ-deformation,

⟨final state||M(E2)||initial state⟩ = 3
∫ π/3

0
t(γ0) sin 3γ0dγ0 , (6.9)

where

t(γ0) =
1

3 sin 3γ0
⟨final state||M(E2)δ(γ − γ0)||initial state⟩ . (6.10)

The values of t(γ0) are shown in figure 6.15 for the transitions from the isomer, where the

effective charge of the i13/2 neutrons (e
eff) is set to 0 (i. e. only the core part ofM(E2) is

considered): The transition amplitudes due to the particles are smaller than those by the

core by an order of magnitude. It is seen from the figure that the main contribution to

the isomeric transitions comes from small γ-deformation components, in spite of the fact

that the large-K mixing is principally due to large γ-deformation componets.

In conclusion, the anomalously largeK-mixing in the γ-vibrational model is attributed

to the quantum fluctuation in shape into large γ-deformations, as is speculated in section

4. The K-isomeric transitions occur, however, mainly at small γ-deformations. Therefore

the isomeric transitions are likely to occur principally from the small-amplitude ground-

band-like components (with small γ) to the main component of the ground-band state

(and from the main component of the isomer to the small-amplitude K=10 component

in the ground-band state), not directly between the components having large γ. The

fluctuation in γ plays the crucial role in mixing the ground-band state and the isomer. A

probable picture for such mixing is the the barrier penetration mechanism via the largely

γ-deformed shape. But treatments based on such picture can not be quantitative, since

the transition amplitudes are rather widely spread as for γ.
3It should be noted, however, that we can not see the second peak in the probability distribution of

K, on the contrary to the conjecture in the figure 10 of ref. [13], if we integrate the probability with
respect to γ: The peak is covered by the larger-amplitude components having large γ-deformations, i. e.
the components at the potential barrier, at least for the Kπ=10+ isomer. This situation is attributed to
the mismatching in energy. It is also worth while noting that the γ-potential of 184Os is like that in (C),
not like that in (A).
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6.6 Effects of the shape of the γ-potential on energy

levels

In this section we compare the calculated energy levels (including the effects of coupling

with the particles) with the experimental ones for the nucleus 184Os. When we limit

the shape of the γ-potential to those with V2 = 0, we have to use V1 ≃ −3 so as to

reproduce the experimental energy level of the γ-bandhead. But if we fit the spectrum

of the ground band to the experimental one, the best value for V1 is about −5. Thus

γ-potentials including higher multipolarity terms (eq. (4.20)) are required.

In figure 6.16 we show the energy spectrum of the ground, the γ-, and the Kπ = 10+

bands for the γ-potentials shown in the upper right hand portion of figure 6.9, in which

the energy level of the γ-bandhead is fitted to the experimental value. The agreement of

the spectrum of the ground band with the experimental one is improved by using V2 > 0.

The odd-even staggering of the spectrum of the γ-band is also reproduced rather well by

using a core which lies between the γ-vibrational model and the triaxial rotor model. The

γ-potentials required by these energy levels are consistent with those preferred by the half-

life of the K-isomer in a qualitative way. They are also consistent with microscopically

calculated potentials for nearby nuclei [19] in a qualitative way. The energy spectra of

the same bands for the γ-vibrational potentials (V2=0) are also shown in figure 6.17 for

reference.

The energy spectrum of the yrast band at the first backbending region is shown in

figure 6.18. Experimental and calculated spectra are expressed in terms of the angular

velocity ωrot and the kinematical moment of inertia J (1). Assuming that the energy levels

of a rotational band are expressed by a function of L2 where L = h̄
√
I(I + 1), these new

quantities are defined as follows.

ωrot =
dE

dL
≃ EI+1 − EI−1

2h̄
at I , (6.11)

J (1) =
L

ωrot

≃ h̄2(2I + 1)

EI+1 − EI−1

at I . (6.12)

We used three kinds of cores, i. e. , the axially symmetric rotor model, the triaxial rotor

model with γ0 = 14.89◦, and the γ-soft model with (V1, V2)=(−2.99, 0). The latter two
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models reproduce the experimental E(2+γ ) including the effects of coupling with the par-

ticles. In the γ-soft model, we truncate the core states according to the Nγ-truncation

scheme with Nmax
γ =4 so as to include enough number of states at high spin. Among the

three models, the triaxial rotor model reproduces the experimental backbending behavior

most excellently. This result is consistent with the prediction of the K-isomeric decay

rate. But other factors like the β-vibration would also affect the yrast spectrum as strong

as the γ-degree of freedom. Therefore more elaborate studies seem necessary to draw any

conclusion about the γ-degree of freedom from the backbending behavior.

Now we point out the defects of our model in the energy levels. The moment of inertia

of the calculated γ-band is smaller than that of the experimental γ-band. It is also smaller

than the moment of inertia of the calculated ground band: This is a characteristic of the

γ-soft model, at least when the γ-potential of the form of eq. (4.20) is assumed. On

the contrary, the calculated moment of inertia of the Kπ = 10+ band is larger than the

experimental one.

To summarize, the γ-potential which fits the partial half-life of the K-isomer also

improves the agreement of the some calculated energy levels with the experimental ones.

But for some of other levels, we do not obtain very good agreements between the calculated

energy levels and the experimental ones. This is not a very surprising result because

we concentrated on the γ-degree of freedom and suppressed many others, e. g. the β-

vibrational degree of freedom.
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Table 6.1: Effects of changing the energy scaling parameter of the core (ϵc) on the partial
half-life of the Kπ = 10+ isomer in 184Os. When ϵc=ϵ

0
c (=0.2805 MeV), the experimental

E(2+gr) is reproduced including the effects of coupling with the particles. The last column
gives the branching ratio of the 8+gr state to the 10+gr state in the depopulation of the
Kπ=10+ isomer.

ϵc/ϵ
0
c E(2+gr) τ1/2 Br(8+gr/10

+
gr)

[ MeV ] [ sec ]
0.4 0.052 1.43×100 2 ×10−5

0.5 0.064 4.75×10−2 0.030
0.6 0.076 4.10×10−3 0.095
0.7 0.087 5.26×10−4 0.201
0.8 0.098 8.12×10−5 0.353
0.9 0.109 1.34×10−5 0.572
1.0 0.120 2.05×10−6 0.882
1.1 0.130 2.28×10−7 1.28
1.2 0.141 5.11×10−9 1.75
exp. 0.120 1.20×10−7 2.0

Table 6.2: Effects of changing the strength of the quadrupole-quadrupole interaction (κ)
on the partial half-life of the Kπ = 10+ isomer in 184Os. As for the last column, see the
comments of table 6.1.

κ/h̄ω(Nj0 + 3/2) τ1/2 [ sec ] Br(8+gr/10
+
gr)

0.14 4.18×10−9 1.22
0.16 4.64×10−8 1.12
0.18 3.38×10−7 0.995
0.20 2.05×10−6 0.882
0.22 1.08×10−5 0.780
0.24 5.82×10−5 0.685
0.26 3.32×10−4 0.620
exp. 1.20×10−7 2.0
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Table 6.3: Summary of decay properties of the Kπ = 10+ isomer.

Summary of the transitions from the Kπ=10+ isomers

Core model E(2+γ ) B(M1) B(E2) B(E2) τ1/2 to Br(8+gr/10
+gr)

(V1,V2) to 10+gr to 10+gr to 8+gr 8+gr and 10+gr
or (Using experimental
γ0 [ MeV ] [ µ2

N ] [ e2fm4 ] [ e2fm4 ] energies)

(A) 184Os, γ-vibrational model
(0, 0) 0.631 4.06×10−4 1.99×10+2 6.41×10−2 84.6 ps 0.015
(−2, 0) 0.838 4.42×10−5 8.30×10−2 2.14×10−2 5.04 ns 0.413
(−4, 0) 1.048 1.57×10−5 2.68×10−2 9.56×10−3 13.2 ns 0.521
(−6, 0) 1.247 6.15×10−6 1.13×10−2 4.34×10−3 32.0 ns 0.603
(−8, 0) 1.429 2.85×10−6 5.51×10−3 2.18×10−3 66.9 ns 0.653
(−10, 0) 1.596 1.55×10−6 3.12×10−3 1.25×10−3 120. ns 0.685
(−12, 0) 1.751 9.77×10−7 2.00×10−3 8.17×10−4 188. ns 0.711

(B) 184Os, triaxial rotor model
γ0 = 30◦ 0.243 8.40×10−6 1.34×10−1 2.08×10−3 25.9 ns 0.171
γ0 = 25◦ 0.311 3.59×10−6 4.15×10−6 1.31×10−3 68.5 ns 0.321
γ0 = 20◦ 0.497 1.84×10−6 1.09×10−3 9.47×10−4 121. ns 0.447
γ0 = 15◦ 0.929 5.85×10−7 8.81×10−4 4.56×10−4 324. ns 0.667
γ0 = 12◦ 1.492 2.64×10−7 5.45×10−4 2.41×10−4 670. ns 0.774
γ0 = 10◦ — 1.65×10−7 3.70×10−4 1.59×10−4 1.05 µs 0.815
γ0 = 0◦ — 8.08×10−8 1.96×10−4 8.44×10−5 2.05 µs 0.882

(C) 184Os, Those reproducing E(2+γ )

(−2.99, 0) 0.943 2.64×10−5 4.51×10−2 1.45×10−2 8.13 ns 0.470
(−5.71, 3) 0.943 1.32×10−5 1.83×10−2 7.43×10−3 16.2 ns 0.485
(−10.05, 7) 0.944 6.65×10−6 8.08×10−3 3.87×10−3 31.9 ns 0.501
(−20.12, 15) 0.943 3.34×10−6 3.71×10−3 2.00×10−3 62.9 ns 0.517
(−41.59, 30) 0.943 2.11×10−6 2.26×10−3 1.30×10−3 98.9 ns 0.532
(−72.96, 50) 0.943 1.62×10−6 1.76×10−3 1.03×10−3 127. ns 0.548
γ0 = 14.89◦ 0.944 5.70×10−7 8.68×10−4 4.46×10−4 332. ns 0.671
Experiment 0.943 9.0×10−7 —– 2.0×10−3 120 ns 2.0

(D) 182W, β0=0.22
(−6.96, 0) 1.222 1.96×10−7 4.65×10−4 1.21×10−4 957 ns 0.442
γ0 = 12.18◦ 1.222 2.70×10−9 1.83×10−6 6.41×10−6 67.3 µs 0.485
γ0=0◦ — 6.27×10−10 1.04×10−6 4.17×10−7 294 µs 0.483

(E) 182W, β0=0.24
(−6.05, 0) 1.222 5.87×10−8 1.77×10−4 6.10×10−5 2.62 µs 0.738
γ0 = 12.32◦ 1.222 8.93×10−15 2.85×10−8 2.35×10−7 11.0 ms 4.85
γ0=0◦ — 4.85×10−11 2.28×10−7 4.72×10−8 3.20 ms 0.671

Experiment 1.222 9.3×10−8 —– 1.4×10−4 1.4 µs 1.2
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Table 6.4: Reduced E2 transition probabilities at low spin. Parameters are those adjusted
for 184Os which reproduce the experimental E(2+γ ). Experimental values are taken from
the figures in ref. [73].

B(E2) values in units of [ e2 fm4 ] at low spin for 184Os

Core models, (V1, V2) or γ0
(−2.99, 0) (−5.71, 3) (−10.05, 7) (−20.12, 15) (−41.59, 30) (−71.96, 50) 14.89 deg.

21 → 01 5.98E + 3 5.98E + 3 5.98E + 3 5.98E + 3 5.98E + 3 5.98E + 3 6.19E + 3
22 → 01 4.57E + 2 4.84E + 2 4.96E + 2 4.98E + 2 4.88E + 2 4.76E + 2 3.24E + 2
21 → 21 7.84E + 3 7.84E + 3 7.92E + 3 7.92E + 3 8.00E + 3 8.00E + 3 8.48E + 3
22 → 21 1.40E + 3 1.39E + 3 1.36E + 3 1.32E + 3 1.26E + 3 1.22E + 3 8.03E + 2
22 → 22 7.52E + 3 7.45E + 3 7.52E + 3 7.60E + 3 7.76E + 3 7.84E + 3 8.48E + 3
31 → 21 8.10E + 2 8.53E + 2 8.78E + 2 8.84E + 2 8.71E + 2 8.47E + 2 5.79E + 2
31 → 22 8.78E + 3 9.43E + 3 9.80E + 3 1.00E + 4 1.02E + 4 1.04E + 4 1.10E + 4
31 → 31 2.36E − 4 2.25E − 4 2.24E − 4 2.26E − 4 2.34E − 4 2.42E − 4 4.41E − 4
41 → 21 8.77E + 3 8.77E + 3 8.77E + 3 8.77E + 3 8.77E + 3 8.77E + 3 8.96E + 3
41 → 22 5.42E + 1 6.66E + 1 7.39E + 1 7.80E + 1 7.86E + 1 7.68E + 1 5.23E + 1
42 → 21 8.28E + 1 8.52E + 1 8.71E + 1 8.89E + 1 9.02E + 1 8.96E + 1 6.61E + 1
42 → 22 4.09E + 3 3.68E + 3 3.48E + 3 3.40E + 3 3.40E + 3 3.40E + 3 3.56E + 3
41 → 31 7.59E + 2 8.10E + 2 8.35E + 2 8.39E + 2 8.21E + 2 7.97E + 2 5.33E + 2
42 → 31 5.67E + 3 6.24E + 3 6.50E + 3 6.72E + 3 6.88E + 3 7.05E + 3 7.80E + 3
41 → 41 6.24E + 3 6.13E + 3 6.08E + 3 6.13E + 3 6.18E + 3 6.24E + 3 7.00E + 3
42 → 41 1.49E + 3 1.52E + 3 1.52E + 3 1.49E + 3 1.46E + 3 1.41E + 3 9.52E + 2
42 → 42 3.64E + 2 8.82E + 2 1.22E + 3 1.46E + 3 1.62E + 3 1.68E + 3 1.65E + 3
51 → 31 5.81E + 3 5.77E + 3 5.72E + 3 5.72E + 3 5.72E + 3 5.72E + 3 5.91E + 3
51 → 41 4.46E + 2 4.62E + 2 4.71E + 2 4.76E + 2 4.72E + 2 4.63E + 2 3.24E + 2
51 → 42 3.89E + 3 4.44E + 3 4.85E + 3 5.23E + 3 5.50E + 3 5.68E + 3 6.05E + 3
51 → 51 1.37E + 3 1.60E + 3 1.83E + 3 2.07E + 3 2.24E + 3 2.35E + 3 2.72E + 3
61 → 41 1.00E + 4 1.00E + 4 1.00E + 4 1.00E + 4 1.00E + 4 1.00E + 4 1.00E + 4
61 → 42 1.34E + 2 1.64E + 2 1.87E + 2 2.08E + 2 2.20E + 2 2.23E + 2 1.72E + 2
62 → 41 2.04E + 1 1.92E + 1 1.77E + 1 1.59E + 1 1.44E + 1 1.36E + 1 8.80E + 0
62 → 42 7.58E + 3 7.10E + 3 6.83E + 3 6.64E + 3 6.51E + 3 6.51E + 3 6.83E + 3
61 → 51 1.03E + 3 1.12E + 3 1.18E + 3 1.22E + 3 1.24E + 3 1.22E + 3 8.64E + 2
62 → 51 2.69E + 3 2.80E + 3 2.86E + 3 2.92E + 3 2.98E + 3 3.07E + 3 3.65E + 3
61 → 61 5.20E + 3 5.04E + 3 4.92E + 3 4.84E + 3 4.88E + 3 4.96E + 3 5.98E + 3
62 → 61 1.44E + 3 1.46E + 3 1.44E + 3 1.38E + 3 1.32E + 3 1.28E + 3 8.80E + 2
62 → 62 1.16E + 3 2.30E + 3 3.20E + 3 4.06E + 3 4.69E + 3 5.00E + 3 5.24E + 3

Ratios of B(E2) values at low spin for 184Os

Core models, (V1, V2) or γ0
(−2.99, 0) (−10.05, 7) (−41.59, 30) (−71.96, 50) 14.89 deg. Exp.

B(E2;31 → 21)/B(E2;31 → 41) 1.89 1.87 1.88 1.89 1.93 1.4
B(E2;22 → 01)/B(E2;22 → 21) 0.325 0.363 0.385 0.390 0.404 0.5
B(E2;42 → 31)/B(E2;42 → 22) 1.385 1.87 2.02 2.07 2.19 —
B(E2;22 → 21)/B(E2;21 → 01) 0.234 0.228 0.212 0.204 0.130 —
B(E2;42 → 41)/B(E2;42 → 22) 0.365 0.437 0.432 0.417 0.267 0.2
B(E2;31 → 21)/B(E2;31 → 22) 0.092 0.090 0.085 0.081 0.053 —
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Figure 6.1: The effects of changing parameters of the model on the reduced transition
probabilities of the decay of the Kπ = 10+ isomer. The axially symmetric rotor is em-
ployed as the core. Other parameters as those adjusted for 184Os. See the comments in
tables 6.1 and 6.2.
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Figure 6.2: Effects of changing ϵc on the probability distribution of the K-quantum num-
ber. The axially symmetric rotor is employed as the core. Other parameters as those
adjusted for 184Os. When ϵc=ϵ

0
c (=0.2805 MeV), the experimental E(2+gr) is reproduced

including the effects of coupling with the particles.

Figure 6.3: Effects of changing κ on the probability distribution of the K-quantum num-
ber. The axially symmetric rotor is employed as the core. Other parameters as those
adjusted for 184Os.
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Figure 6.4: The excitation energy of the γ-bandhead versus the partial half-life of the
Kπ = 10+ isomer with M1 and E2 transitions into the ground band states in 184Os.
Transition energies are taken from experiments in calculating the partial half-life.
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Figure 6.5: The same as figure 6.4, but for 182W using β0=0.22.

Figure 6.6: The same as figure 6.4, but for 182W using β0=0.24.
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Figure 6.7: The probability distribution of the K-quantum number for the 10+gr state and
the Kπ = 10+ isomer in 184Os using the γ-vibrational model (V2=0).

Figure 6.8: The same as figure 6.7, but using the triaxial rotor model.
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Figure 6.9: The γ-potential V (γ) in units of ϵc (∼ 0.2 MeV) and the probability distribu-
tion of γ of the bare (i. e. the particles are not coupled with) core in the ground state. The
γ-potential is measured from the ground state energy. The values of V1 of the potentials
given in the upper right-hand portion are given in the part (C) of table 5.1.
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Figure 6.10: The probability distribution of γ in the coupled system of the core and
the particles. Parameters are those adjusted for 184Os which reproduce the experimental
E(2+γ ).
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Figure 6.11: Reduced probabilities of isomeric and collective transitions using various
shapes of the γ-potential. In the right-hand side, we give collective E2 transitions in the
Kπ=10+ band (in the top) and in the ground and the γ-band (for high spin in the middle
and for low spin in the bottom).
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Figure 6.12: The γ-potential reproducing the half-life of the K-isomer and E(2+γ ) for
184Os.
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Figure 6.13: Probabilty distribution of γ and |K| in the 10+gr state. Parameters are those
adjusted for 184Os which reproduce the experimental E(2+γ ).
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Figure 6.14: Probabilty distribution of γ and |K| in the Kπ = 10+ isomer. Parameters
are those adjusted for 184Os which reproduce the experimental E(2+γ ).
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Figure 6.15: Distribution of the isomeric E2 transition amplitudes with respect to the size
of γ-deformation.
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Figure 6.16: Energy levels of the ground band, the γ-band, and the Kπ = 10+ band for
184Os. V2 is varied from 0 to 50, while V1 is adjusted so that the experimental E(2+γ )
is reproduced. (See γ-potentials given in the upper right hand portion of figure 6.9.)
The limiting case of the triaxial rotor model (γ = 14.89◦) is included (denoted by TR).
Experimental spectra are also shown (denoted by EXP).
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Figure 6.17: Energy levels of the ground band, the γ-band, and the Kπ = 10+ band for
184Os using the γ-vibrational model (V2=0). Parameters are those adjusted for 184Os.
The limiting case of the axially symmetric rotor model is denoted by AS.

86



Figure 6.18: Kinematical moment of inertia versus the angular velocity for the yrast band
of 184Os.
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Chapter 7

Summary

We examined the effects of the γ-degree of freedom on the decay properties of K-isomers.

Aiming at the dynamical treatment of γ, we employed a γ-soft version of Bohr’s quantum

liquid drop model as the rotor of the particle-rotor model and treated the coupling between

the large-amplitude surface motions and the motions of particles in an intruder orbital

in a fully quantum mechanical way. The feature of our model is the description in the

laboratory frame using the so-called weak coupling bases. Special efforts are made so

that the results of calculations converge with respect to the truncation of bases of highly

excitated γ-vibrational character.

We studied the strong violation of the K-selection rule observed in the decays of

the Kπ=10+ isomers in 182W and 184Os. Before introducing the γ-degree of freedom,

we investigated the effects of the Coriolis interaction on the mixing of the K-quantum

number. It was found that the short half-lives of the isomers can not be reproduced

assuming axially symmetric nuclear shape, although the Coriolis interaction is rather

strong in these less-deformed transitional nuclei.

Next, we took into account the γ-degree of freedom. We changed the shape of the

potential for γ-deformation and mediated two extreme models: One is the γ-vibrational

model of Bohr and Mottelson, in which γ fluctuates around γ=0◦ in a relatively shallow

potential. The other is the triaxial rotor model of Davydov and Filippov, which treats γ

as a static parameter and fix it at some constant value γ0.

The result is that the relatively short half-lives of the isomers can be reproduced when

we introduce the γ-degree of freedom. The half-lives calculated with the γ-vibrational
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model are shorter than those calculated with the triaxial rotor model by a factor of more

than order two. The experimental half-lives are located between (or in the vicinities of)

the values calculated with the two models. It is rather surprising that the two models can

be distinguished so clearly: They have no distinct difference in the quantities of collective

character like intraband E2 transitions.

This difference originates in the quantum fluctuation in γ. The γ-vibrational model

has a very shallow potential for γ-deformation and the wave function has a long tail. The

amplitudes of isomeric decays are affected remarkably by this large-γ tail of the wave

function, as is illustrated by the fact that the components at large γ-deformations play

the crucial role to mix the K-quantum number.

It is worth while noting, however, that the transitions occur mainly from the small-γ

components, not from these large-γ ones. Hence we had better suppose indirect processes

through which the quantum fluctuation in shape hastens the isomeric decays. The most

likely process is the barrier penetration mechanism given by Chowdhury and his coworkers,

where the ground-band state and the isomer mix with each other — in spite of the large

difference in their structures — via largely γ-deformed states. But any quantitative

approximations do not seem possible on the basis of such semiclassical picture at leat for

the Kπ=10+ isomers because of the rather wide spread of the strength distribution of the

isomeric transition.

On the contrary, quantities of collective character are determined by the bulk prop-

erties of the wave function. When we use the triaxial rotor model, we can simulate the

bulk properties by adjusting the size of the static γ-deformation γ0. But there is no tail,

because γ is fixed at a constant value, and the mixing of the K-quantum number is much

smaller than in the γ-vibrational model. Hence we can estimate the size of the fluctuation

in γ from the degree of violation of the K-selection rule by utilizing the average value of

γ, which has already been obtained from e. g. the excitaion energy of the γ-bandhead.

From the present calculations, it seems that the nucleus 182W is much like the γ-

vibrational model while the nucleus 184Os is rather like the triaxial rotor model, in agree-

ments with other microscopic calculations. But it is worth while noting that there are

many degrees of freedom excluded in our model. At first, our γ-potential has only two
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degrees of freedom. More detailed study of the potential shape is a future problem. An-

other important thing to be considered is the β-vibration, which enables us to take into

account the change in the size of deformation due to high spin in a dynamical way.
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[40] S. Åberg, Nucl. Phys. A306, 89 (1978)

[41] M.J.A. de Voigt, J. Dudek and Z. Szymanski, Rev. Mod. Phys. 55 (1983) 949.

[42] J. Burde, R.M. Diamond, and F.S. Stephens, Nucl. Phys. 85 (1966) 481.

[43] T.L. Khoo, F.M. Bernthal, R.A. Warner, G.F. Bertsch, and G. Hamilton, Phys. Rev.

Lett. 35 (1975) 1256.

94



[44] T.L. Khoo and G. Løvhøiden, Phys. Lett. B67 (1977) 271.

[45] P.M. Walker, Phys. Scripta T5 (1983) 29.
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